一道有争议的题。初三数学。大神请进 关于等腰三角形内取点P构成等腰三角形的问题。

在等腰三角形ABC(AB=AC≠BC)所在的平面上找一点P,使△PAB、△PBC,△PAC都是等腰三角形,这样的P点有几个?注意!!!不是等边三角形!!!看清楚!网上答案... 在等腰三角形ABC(AB=AC≠BC)所在的平面上找一点P,使△PAB、△PBC,△PAC都是等腰三角形,这样的P点有几个? 注意!!!不是等边三角形!!! 看清楚! 网上答案很杂 很多错的。 老师给的答案是6个。 但是我用黄金三角形画出有8个点。 黄金三角形不知道的请百度。 到底是我错还是老师错了? 别想在百度复制答案。 我基本看过一遍了。 问过这个的人很多。

如果有条件画一张图。 尤其是看看黄金三角形上有几个点。
问这个问题不为别的, 我只想知道正确答案。 考试过去了错批不改。 尽量详细解答我的问题。
展开
 我来答
wenxindefeng6
高赞答主

2013-12-11 · 一个有才华的人
知道大有可为答主
回答量:1.4万
采纳率:100%
帮助的人:6245万
展开全部

楼主说本题有争议有一定道理!

当AB=AC≠BC时,在⊿ABC所在的平面内找点P使得△PAB、△PBC,△PAC都是等腰三角形,当顶角∠BAC的度数变化时,符合条件的点P个数是不确定的.

(1)请看左图,符合:AB=AC≠BC,而符合条件的点P只有6个.(即图中的红色点)

(2)请看中图,⊿ABC为黄金三角形,即∠BAC=36°,而符合条件的点P有8个.(即图中红色点)

(3)请看右图,⊿ABC为等腰直角三角形,,而符合条件的点P却只有3个.(即图中红色点)

显然,这三种情况都符合条件"AB=AC≠BC",但结果却不一样,选哪个更合适呢?

◆如果让我来改卷,当然答案还是以"6个"为最佳答案.因为这种情况更符合一般性.

中图的答案没有一般性,因为它不仅有条件AB=AC≠BC,还附加了一个新的条件"∠BAC=36°";

右图的答案没有一般性,因为它不仅有条件AB=AC≠BC,还附加了一个新的条件"∠BAC=90°".

更多追问追答
追问
非常感谢您的回答,感激不尽。        您和tmduser 回答都很优秀。          我不知选哪个才好, 看您的等级更高, 那还是照顾等级略低的tmduser吧。 希望您能谅解。
追答
你这么选,我很无言……
高人仰北谋
2013-12-08 · TA获得超过3403个赞
知道大有可为答主
回答量:2259
采纳率:86%
帮助的人:753万
展开全部
有6个是必定存在的点,如果在黄金三角形的条件下,可以有8个,
详细说明整理好再上传上来。
追问
还可以画出更多的点吗?
追答

以下是所有可能性的讨论。 

仔细研究后可以发现,

P2是P7的充分条件,他们是同一点,P4是P5的充分条件,他们是同一点。

因此黄金三角形时仍然只有六个点。

真正有8个点时候是A=108°的情况下。如下图:

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
金星金牛
2013-12-08 · TA获得超过2357个赞
知道小有建树答主
回答量:1480
采纳率:0%
帮助的人:1023万
展开全部
除去等边三角形外的等腰三角形普遍共有的,你那黄金三角形是特有的。共有的是6个点,你那特有的8个点也不错。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式