急需解答,谢谢啦
1个回答
展开全部
(1)f(x)=Asin(ωx+φ),A=1,ω=T/(2π)=1
∴f(x)=sin(x+φ),f(0)=sin(φ)=0,
∵0≤φ<π/2,∴φ=0
∴f(x)=sin(x)
(2)A(α,sinα),B(β,sinβ),α-β=π/3
│AB│=√[(α-β)^2+(sinβ-sinα)^2]
=√[(π/3)^2+(-√3cosα/2-sinα/2)^2]
=√[(π/3)^2+(√3cosα/2+sinα/2)^2]
=√[(π/3)^2+(sin(α+π/3))^2]
∴当(sin(α+π/3))^2=1时,│AB│有最大值=√(π^2/9+1)
这时α=π/6或α=-5π/6
∴f(x)=sin(x+φ),f(0)=sin(φ)=0,
∵0≤φ<π/2,∴φ=0
∴f(x)=sin(x)
(2)A(α,sinα),B(β,sinβ),α-β=π/3
│AB│=√[(α-β)^2+(sinβ-sinα)^2]
=√[(π/3)^2+(-√3cosα/2-sinα/2)^2]
=√[(π/3)^2+(√3cosα/2+sinα/2)^2]
=√[(π/3)^2+(sin(α+π/3))^2]
∴当(sin(α+π/3))^2=1时,│AB│有最大值=√(π^2/9+1)
这时α=π/6或α=-5π/6
追问
谢谢。。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询