xtanx^2的不定积分怎么算 要过程

教育小百科达人
2019-05-08 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:467万
展开全部

∫ xtan(x²) dx

=(1/2)∫ sin(x²)/cos(x²) d(x²)

=-(1/2)∫ 1/cos(x²) d(cosx²)

=-(1/2)ln|cos(x²)| + C

连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

扩展资料:

把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。

将所求积分化为两个积分之差,积分容易者先积分。实际上是两次积分。

有理函数分为整式(即多项式)和分式(即两个多项式的商),分式分为真分式和假分式,而假分式经过多项式除法可以转化成一个整式和一个真分式的和,可见问题转化为计算真分式的积分。

参考资料来源:百度百科——不定积分

轮看殊O
高粉答主

2019-05-07 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:729万
展开全部

∫ xtan(x²) dx

=(1/2)∫ sin(x²)/cos(x²) d(x²)

=-(1/2)∫ 1/cos(x²) d(cosx²)

=-(1/2)ln|cos(x²)| + C

扩展资料

不定积分的公式

1、∫ a dx = ax + C,a和C都是常数

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

3、∫ 1/x dx = ln|x| + C

4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + C

6、∫ cosx dx = sinx + C

7、∫ sinx dx = - cosx + C

8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

9、∫ tanx dx = - ln|cosx| + C = ln|secx| + C

10、∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
丘冷萱Ad
推荐于2017-12-15 · TA获得超过4.8万个赞
知道大有可为答主
回答量:5205
采纳率:37%
帮助的人:3899万
展开全部
∫ xtan(x²) dx
=(1/2)∫ sin(x²)/cos(x²) d(x²)
=-(1/2)∫ 1/cos(x²) d(cosx²)
=-(1/2)ln|cos(x²)| + C

希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。
追问
其实整个题目是这样的求定积分f-1到1 (x^2+x(tanx)^2)dx  可能是我没打清楚 是x(tanx)^2 不是xtan(x^2)  这个平方是属于tan的不是属于x的
追答
那更简单了
由于xtan²x是一个奇函数,在对称区间上的积分为0
∫[-1→1] (x²+xtan²x)dx
=∫[-1→1] x² dx
=(1/3)x³ |[-1→1]
=2/3

以后记住,定积分题不可随便换成不定积分,定积分能做,不定积分未必能做。
希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Chock9898
高粉答主

2019-12-17 · 关注我不会让你失望
知道答主
回答量:85
采纳率:100%
帮助的人:1.5万
展开全部

解答过程如图所示:

扩展资料:

一、不定积分的公式

1、∫ a dx = ax + C,a和C都是常数

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

3、∫ 1/x dx = ln|x| + C

二、一般来说,u,v 选取的原则是:

1、积分容易者选为v, 2、求导简单者选为u。

例子:∫Inx dx中应设U=Inx,V=x

分部积分法的实质是:将所求积分化为两个积分之差,积分容易者先积分。实际上是两次积分。

参考资料来源:百度百科-不定积分

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2012-10-20
展开全部
adfasdfasdfasdf
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式