当直线L的斜率不存在时,斜截式y=kx+b 当k=0时 y=b
当直线L的斜率存在时,点斜式y2—y1=k(X2—X1),
当直线L在两坐标轴上存在非零截距时,有截距式X/a+y/b=1
对于任意函数上任意一点,其斜率等于其切线与x轴正方向的夹角,即tanα
斜率计算:ax+by+c=0中,k=-a/b.
直线斜率公式:k=(y2-y1)/(x2-x1)
两条垂直相交直线的斜率相乘积为-1:k1*k2=-1.
当k>0时,直线与x轴夹角越大,斜率越大;当k<0时,直线与x轴夹角越小,斜率越小
扩展资料:
如果直线与x轴垂直,直角的正切值无穷大,故此直线不存在斜率。 当直线L的斜率存在时,对于一次函数y=kx+b(斜截式),k即该函数图像(直线)的斜率。
斜坡坡面的竖直高度h与水平宽度l的比值i叫做坡度;如果把坡面与水平面的夹角α叫做坡角,那么;坡度越大<=>α角越大<=>坡面越陡,所以i=tanα可以反映坡面倾斜的程度。
斜率k等于所对应的直线(有无数条,它们彼此平行)的倾斜角(只有一个)α的正切,可以反映这样的直线对于x轴倾斜的程度。实际上,“斜率”的概念与工程问题中的“坡度”是一致的。
参考资料来源:百度百科-直线的斜率
对于直线一般式 Ax+By+C=0 ,斜率公式为:k=-a/b。求斜率步骤为:
对于直线方程x-2y+3=0
(1)把y写在等号左边,x和常数写在右边:2y=x+3.
(2)把y的系数化为1:y=0.5x+1.5.
(3)此时x的系数即为斜率:k=0.5
-b/c是该直线在y坐标轴上交点的纵坐标;-c/a 是直线在x坐标上交点的横坐标。
解析几何中
要通过点的坐标和直线方程来研究直线通过坐标计算求得,使方程形式上较为简单。如果只用倾斜角一个概念,那么它在实际上相当于反正切函数值arctank,难于直接通过坐标计算求得,并使方程形式变得复杂。
坐标平面内,每一条直线都有唯一的倾斜角,但不是每一条直线都有斜率,倾斜角是90°的直线(即x轴的垂线)没有斜率。在学习中,经常要对直线是否有斜率分情况进行讨论。
l1:y=k1x+b1
l2:y=k2x+b2
若l1⊥l2,则k1*k2=-1
若l1//l2,则k1=k2
(2)对于任意两条直线:
l1:A1x+B1y+C1=0
l2:A2x+B2y+C2=0
若两直线垂直,则满足:A1A2*B1B2=0
若两直线平行,则满足:A1B2-A2B1=0
(3)对于斜率存在的直线l:y=kx+b
则直线的倾斜角tanα=k
(4)已知直线上任意两点A(x1,y1) B(x2,y2)
k=(y2-y1)/(x2-x1)
(5)已知直线的斜率k和直线上任意两点A、B的横坐标或纵坐标,那么求AB的距离
|AB|=√(1+k^2)|x1-x2|=|y1-y2|/√(1+k^2)
满意请采纳,谢谢~