已知a、b、c、是三个不等于零的有理数。 1、若a+b+c=1,a^2+b^2+c^2=1,求1/a+1/b+1/c
2、若a^2+b^2+c^2=1,a(1/b+1/c)+b(1/a+1/c)+(1/a+1/b)=-3,求a+b+c的值...
2、若a^2+b^2+c^2=1,a(1/b+1/c)+b(1/a+1/c)+(1/a+1/b)= -3,求a+b+c的值
展开
3个回答
展开全部
解:
1、a+b+c=1,
则(a+b+c)^2=1^2
a^2+b^2+c^2+2ab+2bc+2ac=1
∵a^2+b^2+c^2=1
∴a^2+b^2+c^2+2ab+2bc+2ac=1+2ab+2bc+2ac=1
∴2ab+2bc+2ac=0即ab+bc+ac=0
1/a+1/b+1/c=(bc+ac+ab)/abc=0/abc=0
2、题目抄错了吧,无解!
把a(1/b+1/c)+b(1/a+1/c)+(1/a+1/b)= -3改成a(1/b+1/c)+b(1/a+1/c)+c(1/a+1/b)= -3有解
a(1/b+1/c)+b(1/a+1/c)+c(1/a+1/b)= -3等式两侧都乘以abc,并去括号可得到
a^2×c+a^2×b+b^2×c+b^2×a+c^2×b+c^2×a=-3abc
移项得
a^2×c+c^2×a+abc+a^2×b+b^2×a+abc+b^2×c+c^2×b+abc=0
ac(a+b+c)+ab(a+b+c)+bc(a+b+c)=0
(a+b+c)(ac+ab+bc)=0
由题意可知a+b+c≠0,因此ac+ab+bc=0
a^2+b^2+c^2=1
a^2+b^2+c^2+2(ac+ab+bc)=1
即(a+b+c)^2=1
因此a+b+c=1或a+b+c=-1
1、a+b+c=1,
则(a+b+c)^2=1^2
a^2+b^2+c^2+2ab+2bc+2ac=1
∵a^2+b^2+c^2=1
∴a^2+b^2+c^2+2ab+2bc+2ac=1+2ab+2bc+2ac=1
∴2ab+2bc+2ac=0即ab+bc+ac=0
1/a+1/b+1/c=(bc+ac+ab)/abc=0/abc=0
2、题目抄错了吧,无解!
把a(1/b+1/c)+b(1/a+1/c)+(1/a+1/b)= -3改成a(1/b+1/c)+b(1/a+1/c)+c(1/a+1/b)= -3有解
a(1/b+1/c)+b(1/a+1/c)+c(1/a+1/b)= -3等式两侧都乘以abc,并去括号可得到
a^2×c+a^2×b+b^2×c+b^2×a+c^2×b+c^2×a=-3abc
移项得
a^2×c+c^2×a+abc+a^2×b+b^2×a+abc+b^2×c+c^2×b+abc=0
ac(a+b+c)+ab(a+b+c)+bc(a+b+c)=0
(a+b+c)(ac+ab+bc)=0
由题意可知a+b+c≠0,因此ac+ab+bc=0
a^2+b^2+c^2=1
a^2+b^2+c^2+2(ac+ab+bc)=1
即(a+b+c)^2=1
因此a+b+c=1或a+b+c=-1
展开全部
题目抄错了吧,无解!
把a(1/b+1/c)+b(1/a+1/c)+(1/a+1/b)= -3改成a(1/b+1/c)+b(1/a+1/c)+c(1/a+1/b)= -3有解
a(1/b+1/c)+b(1/a+1/c)+c(1/a+1/b)= -3等式两侧都乘以abc,并去括号可得到
a^2×c+a^2×b+b^2×c+b^2×a+c^2×b+c^2×a=-3abc
移项得
a^2×c+c^2×a+abc+a^2×b+b^2×a+abc+b^2×c+c^2×b+abc=0
ac(a+b+c)+ab(a+b+c)+bc(a+b+c)=0
(a+b+c)(ac+ab+bc)=0
由题意可知a+b+c≠0,因此ac+ab+bc=0
a^2+b^2+c^2=1
a^2+b^2+c^2+2(ac+ab+bc)=1
即(a+b+c)^2=1
因此a+b+c=1或a+b+c=-1
把a(1/b+1/c)+b(1/a+1/c)+(1/a+1/b)= -3改成a(1/b+1/c)+b(1/a+1/c)+c(1/a+1/b)= -3有解
a(1/b+1/c)+b(1/a+1/c)+c(1/a+1/b)= -3等式两侧都乘以abc,并去括号可得到
a^2×c+a^2×b+b^2×c+b^2×a+c^2×b+c^2×a=-3abc
移项得
a^2×c+c^2×a+abc+a^2×b+b^2×a+abc+b^2×c+c^2×b+abc=0
ac(a+b+c)+ab(a+b+c)+bc(a+b+c)=0
(a+b+c)(ac+ab+bc)=0
由题意可知a+b+c≠0,因此ac+ab+bc=0
a^2+b^2+c^2=1
a^2+b^2+c^2+2(ac+ab+bc)=1
即(a+b+c)^2=1
因此a+b+c=1或a+b+c=-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询