已知OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10, OC=6,

(1)如图甲:在OA上选取一点D,将△COD沿CD翻折,使点O落在BC边上,记为E.求折痕CD所在直线的解析式;(2)如图乙:在OC上选取一点F,将△AOF沿AF翻折,使... (1)如图甲:在OA上选取一点D ,将△COD沿CD翻折,使点O落在BC边上,记为E.求折痕CD 所在直线的解析式;
(2)如图乙:在OC上选取一点F,将△AOF沿AF翻折,使点O落在BC边,记为G.
①求折痕AF所在直线的解析式;
②再作GH//AB交AF于点H,若抛物线 过点H,求此抛物线的解析式,并判断它与直线AF的公共点的个数.

(3)如图丙:一般地,在以OA、OC上选取适当的点I、J,使纸片沿IJ翻折后,点O落在BC边上,记为K.请你猜想:①折痕IJ所在直线与第(2)题②中的抛物线会有几个公共点;② 经过K作KL//AB与IJ相交于L,则点L是否必定在抛物线上. 将以上两项猜想在(l)的情形下分别进行验证.
展开
wzhq777
高粉答主

2012-10-21 · 醉心答题,欢迎关注
知道顶级答主
回答量:11.1万
采纳率:95%
帮助的人:2.3亿
展开全部
俊狼猎英团队为您解答

⑴由折叠知:∠DCO=∠DCB=1/2∠OCB=45°,
∴OD=OC,D(0,6),直线CD解析式:Y=-X+6。
⑵①在RTΔAGB中,AG=AO=10,AB=OC=6,∴BG=√(AG^2-AB^2)=8,∴CG=2,
设OF=FG=a,则CF=6-a,在RTΔCFG中,FG^2=CF^2+CG^2,
a^2=(6-a)^2+2^2,a=10/3,∴F(0,10/3),
直线AF解折式:Y=-1/3X+10/3;
②抛物线就有解析式,只过H(2,8/3)求不出解析式。后面也无法解答了。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式