如何判断一个函数是否可导具有可导性

 我来答
轮看殊O
高粉答主

2019-02-09 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:772万
展开全部

首先判断函数在这个点x0是否有定义,即f(x0)是否存在;其次判断f(x0)是否连续,即f(x0-), f(x0+), f(x0)三者是否相等;再次判断函数在x0的左右导数是否存在且相等,即f‘(x0-)=f'(x0+),只有以上都满足了,则函数在x0处才可导。

可导的函数一定连续;不连续的函数一定不可导。

可导,即设y=f(x)是一个单变量函数, 如果y在x=x0处存在导数y′=f′(x),则称y在x=x[0]处可导。

如果一个函数在x0处可导,那么它一定在x0处是连续函数。

扩展资料

判断函数在区间内是否可导,即函数的可导性应该知道定理:

1.所有初等函数在定义域的开区间内可导。

2.所有函数连续不一定可导,在不连续的地方一定不可导。

在大学,再加上用单侧导数判断可导性:

3.函数在某点的左、右导数存在且相等,则函数在该点可导。

4.函数在开区间的每一点可导,则函数在开区间可导。

白雪忘冬
高粉答主

2019-04-22 · 在我的情感世界留下一方美好的文字
白雪忘冬
采纳数:1007 获赞数:376640

向TA提问 私信TA
展开全部

即设y=f(x)是一个单变量函数, 如果y在x=x0处左右导数分别存在且相等,则称y在x=x[0]处可导。如果一个函数在x0处可导,那么它一定在x0处是连续函数

1、设f(x)在x0及其附近有定义,则当a趋向于0时,若 [f(x0+a)-f(x0)]/a的极限存在, 则称f(x)在x0处可导。

2、若对于区间(a,b)上任意一点m,f(m)均可导,则称f(x)在(a,b)上可导。

函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。

可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。

扩展资料

函数可导的知识点:

1、所有初等函数在定义域的开区间内可导。

2、所有函数连续不一定可导,在不连续的地方一定不可导。

3、函数在某点的左、右导数存在且相等,则函数在该点可导。

4、函数在开区间的每一点可导,则函数在开区间可导。

5、设f(x)=|x-a|g(x),g(x)在x=a处连续。

(1)若g(a)=0,则f(x)在x=a处可导,且导数等于0;

(2) 若g(a)≠0,则f(x)在x=a处不可导。

6、可导函数的奇函数的导函数是偶函数,可导函数的偶函数的导函数是奇函数。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
推荐于2019-08-13 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:15.8万
展开全部

首先判断函数在这个点x0是否有定义,即f(x0)是否存在;其次判断f(x0)是否连续,即f(x0-), f(x0+), f(x0)三者是否相等;再次判断函数在x0的左右导数是否存在且相等,即f‘(x0-)=f'(x0+),只有以上都满足了,则函数在x0处才可导。

可导的函数一定连续;不连续的函数一定不可导。

可导,即设y=f(x)是一个单变量函数, 如果y在x=x0处存在导数y′=f′(x),则称y在x=x[0]处可导。

如果一个函数在x0处可导,那么它一定在x0处是连续函数。

扩展资料:

如果f是在x0处可导的函数,则f一定在x0处连续,特别地,任何可导函数一定在其定义域内每一点都连续。反过来并不一定。事实上,存在一个在其定义域上处处连续函数,但处处不可导。

函数f的图象是平面上点对  的集合,其中x取定义域上所有成员的。函数图象可以帮助理解证明一些定理。

如果X和Y都是连续的线,则函数的图象有很直观表示注意两个集合X和Y的二元关系有两个定义:一是三元组(X,Y,G),其中G是关系的图;二是索性以关系的图定义。用第二个定义则函数f等于其图象。

周期函数有以下性质:

(1)若T(T≠0)是f(x)的周期,则-T也是f(x)的周期。

(2)若T(T≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。

(3)若T1与T2都是f(x)的周期,则  也是f(x)的周期。

(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。

(5)T*是f(x)的最小正周期,且T1、T2分别是f(x)的两个周期,则T1/T2∈Q(Q是有理数集)

(6)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
丨天丶佑灬
推荐于2017-10-08 · 还没有填写任何签名哦
丨天丶佑灬
采纳数:665 获赞数:4768

向TA提问 私信TA
展开全部
首先判断函数在这个点x0是否有定义,即f(x0)是否存在;其次判断f(x0)是否连续,即f(x0-), f(x0+), f(x0)三者是否相等;再次判断函数在x0的左右导数是否存在且相等,即f‘(x0-)=f'(x0+),只有以上都满足了,则函数在x0处才可导。
函数可导的条件:
如果一个函数的定义域为全体实数,即函数在其上都有定义,那么该函数是不是在定义域上处处可导呢?答案是否定的。函数在定义域中一点可导需要一定的条件:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在,它的左右极限存在且相等)推导而来。
可导的函数一定连续;不连续的函数一定不可导。
可导,即设y=f(x)是一个单变量函数, 如果y在x=x0处存在导数y′=f′(x),则称y在x=x[0]处可导。
如果一个函数在x0处可导,那么它一定在x0处是连续函数。
函数可导定义:(1)设f(x)在x0及其附近有定义,则当a趋向于0时,若 [f(x0+a)-f(x0)]/a的极限存在, 则称f(x)在x0处可导。
(2)若对于区间(a,b)上任意一点(m,f(m))均可导,则称f(x)在(a,b)上可导。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
孔方兄文化
2016-02-03 · 专注交通及钱币收藏方面
孔方兄文化
采纳数:5490 获赞数:96689

向TA提问 私信TA
展开全部
首先判断函数在这个点x0是否有定义,即f(x0)是否存在;其次判断f(x0)是否连续,即f(x0-), f(x0+), f(x0)三者是否相等;再次判断函数在x0的左右导数是否存在且相等,即f‘(x0-)=f'(x0+),只有以上都满足了,则函数在x0处才可导。
  函数可导的条件:
  如果一个函数的定义域为全体实数,即函数在其上都有定义,那么该函数是不是在定义域上处处可导呢?答案是否定的。函数在定义域中一点可导需要一定的条件:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在,它的左右极限存在且相等)推导而来。
  可导的函数一定连续;不连续的函数一定不可导。
  可导,即设y=f(x)是一个单变量函数, 如果y在x=x0处存在导数y′=f′(x),则称y在x=x[0]处可导。
  如果一个函数在x0处可导,那么它一定在x0处是连续函数。
  函数可导定义:
(1)设f(x)在x0及其附近有定义,则当a趋向于0时,若 [f(x0+a)-f(x0)]/a的极限存在, 则称f(x)在x0处可导。
  (2)若对于区间(a,b)上任意一点(m,f(m))均可导,则称f(x)在(a,b)上可导。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(11)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式