初三数学圆证明题,各位帮忙。
5个回答
展开全部
证明四边形ADFE是菱形,就可以证明AD=AE=DF=EF.
连接ED,根据弧长相等,那么对应的圆周角相等。得出角DEA等于角EDC,根据内错角相等,两直线平行得出,AE∥DF,同理可证AD∥EF,则四边形ADFE是平行四边形。
再根据弧长相等,则弦长相等,得出AD=AE,因此四边形ADFE是菱形,结论得证。
你这儿没有图,我也是根据描述自己画得图,希望对你有帮助!
连接ED,根据弧长相等,那么对应的圆周角相等。得出角DEA等于角EDC,根据内错角相等,两直线平行得出,AE∥DF,同理可证AD∥EF,则四边形ADFE是平行四边形。
再根据弧长相等,则弦长相等,得出AD=AE,因此四边形ADFE是菱形,结论得证。
你这儿没有图,我也是根据描述自己画得图,希望对你有帮助!
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连接OE、OF。
∵EF=2,半径=根号2.
∴△EOF是直角三角形,∠EOF=90°
∵e是ac弧中点,f是ab弧中点。
∴∠COE=∠AOE,∠AOF=∠BOF。
又∵∠EOF=90°,
∴∠COB=2∠EOF=180°。
∴CB是直径,
∠CAB=90°,AC⊥AB。
∵EF=2,半径=根号2.
∴△EOF是直角三角形,∠EOF=90°
∵e是ac弧中点,f是ab弧中点。
∴∠COE=∠AOE,∠AOF=∠BOF。
又∵∠EOF=90°,
∴∠COB=2∠EOF=180°。
∴CB是直径,
∠CAB=90°,AC⊥AB。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连OE,OF
OE⊥AC,OF⊥AB
OE⊥OF
所以AC⊥AB
OE⊥AC,OF⊥AB
OE⊥OF
所以AC⊥AB
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
oef直角三角形 0E垂直AC OF垂直AB。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询