已知在三角形ABC中,AC=BC ,角ACB=90度,D是AB的中点,E是AB边上的一点
展开全部
1.证明:∵∠ACB=90°
∴AC⊥BC
∵BF⊥CE
∴∠ACE=∠CBG
∵∠AEC=∠ADC+∠DCE=90°+∠DCE,∠BGC=∠GFC+∠DCE=90°+∠DCE
∴∠AEC=∠BGC
∵AC=BC
∴△ACE≌△CBG
∴AE=CG
2.BE=CM
证明:∵BF⊥CH,AC⊥BC
∴∠ACH=∠CBF
∵AC=BC
∴RT△ACH≌RT△CBF
∴CH=BG
∵AC=BC,D时AB的中点
∴CD⊥AB
∴∠HCM=∠FBE
∴RT△CHM≌RT△BFE
∴BE=CM
∴AC⊥BC
∵BF⊥CE
∴∠ACE=∠CBG
∵∠AEC=∠ADC+∠DCE=90°+∠DCE,∠BGC=∠GFC+∠DCE=90°+∠DCE
∴∠AEC=∠BGC
∵AC=BC
∴△ACE≌△CBG
∴AE=CG
2.BE=CM
证明:∵BF⊥CH,AC⊥BC
∴∠ACH=∠CBF
∵AC=BC
∴RT△ACH≌RT△CBF
∴CH=BG
∵AC=BC,D时AB的中点
∴CD⊥AB
∴∠HCM=∠FBE
∴RT△CHM≌RT△BFE
∴BE=CM
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1,由已知条件可得△ABC是等腰直角三角,CD是中垂线。
则AC=CB,∠EAC=∠GCB=45度
因为∠CFG=∠BDG=90度,∠CGF=∠BGD,
所以∠FCG=∠DBG 推出∠ACE=∠CBG
所以△ACF≌△CBG,则AE=CG。
2,BE=CM。证明:
因为∠EHA=∠EDC=90度,∠HEA=∠DEC, ∠DCB=∠DAC
所以∠HAE=∠DCE ∠ECB=∠CAM
又因为∠EBC=∠MCA
BC=CA
所以 △EBC≌△MCA 则BE=CM
则AC=CB,∠EAC=∠GCB=45度
因为∠CFG=∠BDG=90度,∠CGF=∠BGD,
所以∠FCG=∠DBG 推出∠ACE=∠CBG
所以△ACF≌△CBG,则AE=CG。
2,BE=CM。证明:
因为∠EHA=∠EDC=90度,∠HEA=∠DEC, ∠DCB=∠DAC
所以∠HAE=∠DCE ∠ECB=∠CAM
又因为∠EBC=∠MCA
BC=CA
所以 △EBC≌△MCA 则BE=CM
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1):证明三形AEC全等于三角形BGC
理由是(AAS)
所以:AE=CG
(2)BE=CM
证明三角形BFE全等于三角形CHM
理由是(AAS)
所以:AE=CG
(2)BE=CM
证明三角形BFE全等于三角形CHM
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询