(2011?肇庆)如图,在一正方形ABCD中.E为对角线AC上一点,连接EB、ED,(1)求证:△BEC≌△DEC:(2)

(2011?肇庆)如图,在一正方形ABCD中.E为对角线AC上一点,连接EB、ED,(1)求证:△BEC≌△DEC:(2)延长BE交AD于点F,若∠DEB=140°.求∠... (2011?肇庆)如图,在一正方形ABCD中.E为对角线AC上一点,连接EB、ED,(1)求证:△BEC≌△DEC:(2)延长BE交AD于点F,若∠DEB=140°.求∠AFE的度数. 展开
 我来答
热恋qjRM
推荐于2016-04-23 · TA获得超过196个赞
知道答主
回答量:173
采纳率:0%
帮助的人:57.3万
展开全部
(1)证明:∵四边形ABCD是正方形,
∴CD=CB,∠DCA=∠BCA,
在△BEC和△DEC中
CD=CB
∠DCE=∠BCE
CE=CE

∴△BEC≌△DEC(SAS).

(2)解:∵∠DEB=140°,
∵△BEC≌△DEC,
∴∠DEC=∠BEC=70°,
∴∠AEF=∠BEC=70°,
∵∠DAB=90°,
∴∠DAC=∠BAC=45°,
∴∠AFE=180°-70°-45°=65°.
答:∠AFE的度数是65°.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式