在单调递增数列{an}中,a1=1,a2=2,且a2n-1,a2n,a2n+1成等差数列,a2n,a2n+1,a2n+2成等比数列,n=1
在单调递增数列{an}中,a1=1,a2=2,且a2n-1,a2n,a2n+1成等差数列,a2n,a2n+1,a2n+2成等比数列,n=1,2,3,….(1)分别计算a3...
在单调递增数列{an}中,a1=1,a2=2,且a2n-1,a2n,a2n+1成等差数列,a2n,a2n+1,a2n+2成等比数列,n=1,2,3,….(1)分别计算a3,a5和a4,a6的值;(2)求数列{an}的通项公式(将an用n表示);(3)设数列{1an}的前n项和为Sn,证明:Sn<4nn+2,n∈N*.
展开
展开全部
(1)由已知,得a3=3,a5=6,a4=
,a6=8.(2分)
(2)a1=
=
,a3=
=
,a5=
=
,;a2=
,a4=
,a6=
,.
∴猜想a2n?1=
,a2n=
,n∈N*,(4分)
以下用数学归纳法证明之.
①当n=1时,a2×1-1=a1=1,a2×1=
=2,猜想成立;
②假设n=k(k≥1,k∈N*)时,猜想成立,即a2k?1=
,a2k=
,
那么a2(k+1)?1=a2k+1=2a2k?a2k?1=2×
?
=
,a2(k+1)=a2k+2=
=
9 |
2 |
(2)a1=
2 |
2 |
1×2 |
2 |
6 |
2 |
2×3 |
2 |
12 |
2 |
3×4 |
2 |
22 |
2 |
32 |
2 |
42 |
2 |
∴猜想a2n?1=
n(n+1) |
2 |
(n+1)2 |
2 |
以下用数学归纳法证明之.
①当n=1时,a2×1-1=a1=1,a2×1=
22 |
2 |
②假设n=k(k≥1,k∈N*)时,猜想成立,即a2k?1=
k(k+1) |
2 |
(k+1)2 |
2 |
那么a2(k+1)?1=a2k+1=2a2k?a2k?1=2×
(k+1)2 |
2 |
k(k+1) |
2 |
(k+1)[(k+1)+1] |
2 |
| ||
a2k |
|