有一个不透明的袋子,装有4个完全相同的小球,球上分别编有数字1,2,3,4.(Ⅰ)若逐个不放回取球两次

有一个不透明的袋子,装有4个完全相同的小球,球上分别编有数字1,2,3,4.(Ⅰ)若逐个不放回取球两次,求第一次取到球的编号为偶数且两个球的编号之和能被3整除的概率;(Ⅱ... 有一个不透明的袋子,装有4个完全相同的小球,球上分别编有数字1,2,3,4.(Ⅰ)若逐个不放回取球两次,求第一次取到球的编号为偶数且两个球的编号之和能被3整除的概率;(Ⅱ)若先从袋中随机取一个球,该球的编号为a,将球放回袋中,然后再从袋中随机取一个球,该球的编号为b,求直线ax+by+1=0与圆x2+y2=116有公共点的概率. 展开
 我来答
美食的俘虏685
推荐于2016-12-01 · TA获得超过329个赞
知道答主
回答量:117
采纳率:50%
帮助的人:163万
展开全部
(Ⅰ)用(a,b)(a,b分别表示第一、二次取到球的编号)表示先后两次取球构成的基本事件,
则基本事件有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),
(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12个…(3分)
设“第一次球的编号为偶数且两个球的编号之和能被3整除”为事件A,
则事件A包含的基本事件有:(2,1),(2,4),(4,2)共有3个; …(5分)
∴P(A)=
3
12
=
1
4
   …(6分)
(Ⅱ)基本事件有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),
(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16个…(8分)
设“直线ax+by+1=0与圆x2+y2=
1
16
有公共点”为事件B,
由题意知:
1
a2+b2
1
4
,即a2+b2≥16,
则事件B包含的基本事件有:(1,4),(2,4),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共有8个; …(11分)
∴P(B)=
8
16
1
2
      …(12分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式