如图,在平面直角坐标系中,点A、C的坐标分别为(-1,0)、(0,-根号3)点B

如图,在平面直角坐标系中,点A、C的坐标分别为(-1,0)、(0,-根号3)点B在X轴上。已知某二次函数的图像经过A、B、C三点,且他的对称轴为直线X=1,点P为直线BC... 如图,在平面直角坐标系中,点A、C的坐标分别为(-1,0)、(0,-根号3)点B在X轴上。已知某二次函数的图像经过A、B、C三点,且他的对称轴为直线X=1,点P为直线BC下方的二次函数图像上的一个动点(点P与B、C不重合),过点P作y轴的平行线交BC于点F.
(1)求该二次函数的解析式;
(2)若设点P的横坐标为m,用含m的代数式表示线段PF的长;
(3)求△PBC面积的最大值,并求此时点P的坐标.
展开
XZeroK
2012-10-21 · TA获得超过529个赞
知道答主
回答量:113
采纳率:0%
帮助的人:82万
展开全部
没图,我试着答一下。
(1)设函数解析式为y=ax²+bx+c;带入(-1,0)、(0,-sqr(3)),且有-b/2a=1;
解得y=sqr(3)/3*x²-2*sqr(3)/3*x-sqr(3);
(2)B为(3,0),直线BC的方程为y=sqr(3)/3*x-sqr(3);
P的坐标为(m,sqr(3)/3*m²-2*sqr(3)/3*m-sqr(3)),F的坐标为(m,sqr(3)/3*m-sqr(3)),
则PF的长为sqr(3)/3*m-sqr(3)-[sqr(3)/3*m²-2*sqr(3)/3*m-sqr(3)]=sqr(3)*m-sqr(3)/3*m²;
(3)BC长为2*sqr(3),求△PBC面积的最大值,即为求抛物线上BC线段下方一点P,到线段BC的距离d最大。
设P为(x1,y1),则d=|sqr(3)/3*x1-y1-sqr(3)|/sqr[(sqr(3)/3)^2+(-1)^2],
其中y1=sqr(3)/3*x1²-2*sqr(3)/3*x1-sqr(3),并且0<x1<3。
化简得:d=|3x1-x1²|/2,解得d最大值为1.125;
△PBC面积的最大值为1/2*BC*d=1.125*sqr(3),此时x1=1.5,P为(1.5,-1.25*sqr(3))。
市子悦ra
2012-10-21 · TA获得超过2153个赞
知道大有可为答主
回答量:5327
采纳率:0%
帮助的人:1971万
展开全部
座标:C(0,2),D(4,2)
面积:S = 4 * 2 = 8
P点不存在,是否AB两点中的点P可以不存在以来,PA,PB,一件事是:升平行定理的两条直线在同一平面内,不相交的平行线被称为。 P,如何将并行呢?
没有看到第三个问题:①常数值②相同的值,(我没有看到你的图。)
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式