以△ABC的两边为AB,AC为腰分别向外作等腰Rt△ABD和等腰Rt△ACE,∠BAD=∠CAE=90°
2个回答
展开全部
移花宫团队为您解答!
证明:过点D做AE的平行线,交AM延长线于点N
∵∠MAE+∠CAH=90
又AH⊥BC,∠CAH+∠ACH=90
∴∠MAE=∠ACH
同样可以证明
∠MAD=∠ABH
∵DN‖AE
∴∠MAE=∠DNA(内错角)
∴∠ACH=∠DNA
在△DNA与△ABC中
∠MAD=∠ABH
∠ACH=∠DNA
且AD=AB(等腰三角形两腰)
∴△DNA≌△ABC
∴DN=AC=AE
∴AN=BC
在△ENA与△ABC中
∵AN=BC
∠MAE=∠ACH
AE=AC
∴△ENA≌△ABC(两边夹角)
∴NE=AB=AD
在四边形ADNE中
DN=AE
NE=AD
∴四边形为平行四边形
∴DE与AN互相垂直平分
∴DM=ME
证明:过点D做AE的平行线,交AM延长线于点N
∵∠MAE+∠CAH=90
又AH⊥BC,∠CAH+∠ACH=90
∴∠MAE=∠ACH
同样可以证明
∠MAD=∠ABH
∵DN‖AE
∴∠MAE=∠DNA(内错角)
∴∠ACH=∠DNA
在△DNA与△ABC中
∠MAD=∠ABH
∠ACH=∠DNA
且AD=AB(等腰三角形两腰)
∴△DNA≌△ABC
∴DN=AC=AE
∴AN=BC
在△ENA与△ABC中
∵AN=BC
∠MAE=∠ACH
AE=AC
∴△ENA≌△ABC(两边夹角)
∴NE=AB=AD
在四边形ADNE中
DN=AE
NE=AD
∴四边形为平行四边形
∴DE与AN互相垂直平分
∴DM=ME
2013-10-25
展开全部
解:(1)AM⊥DE,AM= DE;
(2)结论仍然成立,
证明:如图,延长CA至F,使FA=AC,FA 交DE于点P,连接BF,
∵DA⊥BA,EA⊥AF,
∴∠BAF=90°+∠DAF=∠EAD,
在△FAB与△EAD中:
FA=AE,∠BAF=∠EAD,BA=DA,
∴ △FAB≌△EAD(SAS),
∴BF=DE,∠F=∠AEP,
∴∠FPD+∠F=∠APE+∠AEP=90°,
∴FB⊥DE,
又CA=AF,CM=MB,
∴AM∥FB且AM= FB,
∴AM⊥DE,AM= DE。
(2)结论仍然成立,
证明:如图,延长CA至F,使FA=AC,FA 交DE于点P,连接BF,
∵DA⊥BA,EA⊥AF,
∴∠BAF=90°+∠DAF=∠EAD,
在△FAB与△EAD中:
FA=AE,∠BAF=∠EAD,BA=DA,
∴ △FAB≌△EAD(SAS),
∴BF=DE,∠F=∠AEP,
∴∠FPD+∠F=∠APE+∠AEP=90°,
∴FB⊥DE,
又CA=AF,CM=MB,
∴AM∥FB且AM= FB,
∴AM⊥DE,AM= DE。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询