(2014?广州模拟)如图,三棱锥P-ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=4,E为PC的中点,M为AB的中
(2014?广州模拟)如图,三棱锥P-ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=4,E为PC的中点,M为AB的中点,点F在PA上,且AF=2FP.(...
(2014?广州模拟)如图,三棱锥P-ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=4,E为PC的中点,M为AB的中点,点F在PA上,且AF=2FP.(1)求证:BE⊥平面PAC;(2)求证:CM∥平面BEF;(3)求三棱锥F-ABE的体积.
展开
展开全部
(1)证明:∵PB⊥底面ABC,且AC?底面ABC,∴AC⊥PB …(1分)
由∠BCA=90°,可得AC⊥CB …(2分)
又∵PB∩CB=B,∴AC⊥平面PBC …(3分)
∵BE?平面PBC,∴AC⊥BE …(4分)
∵PB=BC,E为PC中点,∴BE⊥PC …(5分)
∵PC∩AC=C,∴BE⊥平面PAC …(6分)
(2)证明:取AF的中点G,AB的中点M,连接CG,CM,GM,
∵E为PC中点,FA=2FP,∴EF∥CG.…(7分)
∵CG?平面BEF,EF?平面BEF,∴CG∥平面BEF.…(8分)
同理可证:GM∥平面BEF.
又CG∩GM=G,∴平面CMG∥平面BEF.…(9分)
∵CM?平面CDG,∴CM∥平面BEF.…(10分)
(3)解:由(1)可知BE⊥平面PAC
又PB=BC=4,E为PC的中点,∴BE=2
.
∵S△AEF=
S△PAC=
×
×AC×PC=
…(12分)
∴VF-ABE=VB-AEF=
×S△AEF×BE=
∴三棱锥F-ABE的体积为
.…(14分)
由∠BCA=90°,可得AC⊥CB …(2分)
又∵PB∩CB=B,∴AC⊥平面PBC …(3分)
∵BE?平面PBC,∴AC⊥BE …(4分)
∵PB=BC,E为PC中点,∴BE⊥PC …(5分)
∵PC∩AC=C,∴BE⊥平面PAC …(6分)
(2)证明:取AF的中点G,AB的中点M,连接CG,CM,GM,
∵E为PC中点,FA=2FP,∴EF∥CG.…(7分)
∵CG?平面BEF,EF?平面BEF,∴CG∥平面BEF.…(8分)
同理可证:GM∥平面BEF.
又CG∩GM=G,∴平面CMG∥平面BEF.…(9分)
∵CM?平面CDG,∴CM∥平面BEF.…(10分)
(3)解:由(1)可知BE⊥平面PAC
又PB=BC=4,E为PC的中点,∴BE=2
2 |
∵S△AEF=
1 |
3 |
1 |
3 |
1 |
2 |
8 |
3 |
2 |
∴VF-ABE=VB-AEF=
1 |
3 |
32 |
9 |
∴三棱锥F-ABE的体积为
32 |
9 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询