设数列{an}的前n项和为Sn,且Sn=2an-n2+3n-2(n∈N*).(1)求证:数列{an+2n}为等比数列,并求数列{an}
设数列{an}的前n项和为Sn,且Sn=2an-n2+3n-2(n∈N*).(1)求证:数列{an+2n}为等比数列,并求数列{an}的通项公式;(2)若bn=Sn+n2...
设数列{an}的前n项和为Sn,且Sn=2an-n2+3n-2(n∈N*).(1)求证:数列{an+2n}为等比数列,并求数列{an}的通项公式;(2)若bn=Sn+n2an+2n,求数列{bn}的前n项和Bn;(3)若cn=1an?2,数列{cn}的前n项和Tn,求证Tn<34.
展开
1个回答
展开全部
(Ⅰ)证明:∵Sn=2an-n2+3n-2.
当n≥2时,Sn-1=2an-1-(n-1)2+3(n-1)-2,
∴an=2an-2an-1-2n+4,
∴an+2n+2[an-1+2(n-1)],
又当n=1时,a1=0,
∴{an+2n}是以2为首项,2为公比的等比数列,
∴an=2n?2n.
(Ⅱ)解:由(Ⅰ)得Sn=2n+1-n2-n-2,
bn=2?
,
∴Bn=2n?(
+
+…+
),
设Dn=
+
+…+
,①
则2Dn=3+
+…+
+
,②
②-①,得Dn=3+
+…+
?
=4-
-
=4-
,
∴Bn=2n-4+
.
(Ⅲ)证明:当n=1时,T1=
<
,
当n≥2时,∵2n+2-2(n+2)>2[2n+1-2(n+1)],
∴2n+2-2(n+2)>2[2n+1-2(n+1)]>…>2n(22-4)=0,
∴cn=
<
=
当n≥2时,Sn-1=2an-1-(n-1)2+3(n-1)-2,
∴an=2an-2an-1-2n+4,
∴an+2n+2[an-1+2(n-1)],
又当n=1时,a1=0,
∴{an+2n}是以2为首项,2为公比的等比数列,
∴an=2n?2n.
(Ⅱ)解:由(Ⅰ)得Sn=2n+1-n2-n-2,
bn=2?
n+2 |
2n |
∴Bn=2n?(
3 |
2 |
4 |
22 |
n+2 |
2n |
设Dn=
3 |
2 |
4 |
22 |
n+2 |
2n |
则2Dn=3+
4 |
2 |
n+1 |
2n?2 |
n+2 |
2n?1 |
②-①,得Dn=3+
1 |
2 |
1 |
2n?1 |
n+2 |
2n |
=4-
1 |
2n?1 |
n+2 |
2n |
=4-
n+4 |
2n |
∴Bn=2n-4+
n+4 |
2n |
(Ⅲ)证明:当n=1时,T1=
1 |
2 |
3 |
4 |
当n≥2时,∵2n+2-2(n+2)>2[2n+1-2(n+1)],
∴2n+2-2(n+2)>2[2n+1-2(n+1)]>…>2n(22-4)=0,
∴cn=
1 |
2n+2?2(n+2) |
<
1 |
2[2n+1?2(n?1) |
=
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载