求极限lim(n→∞)[(2+3)/5+(2^2+3^2)/(5^2)+(2^3+3^3)/(5^3)+...+(2^n+3^n)/(5^n)]=?
1个回答
展开全部
lim(n→∞)[(2+3)/5+(2^2+3^2)/(5^2)+(2^3+3^3)/(5^3)+...+(2^n+3^n)/(5^n)]
=lim(n→∞)[(2/5)+(2/5)^2+…+(2/5)^n+(3/5)+(3/5)^2+...+(3/5)^n]
=lim(n→∞)(2/5)[1-(2/5)^n]/(1-2/5)+lim(n→∞)(3/5)[1-(3/5)^n]/(1-3/5)
=(2/5)/(3/5)+(3/5)/(2/5)
=2/3+3/2
=13/6
=lim(n→∞)[(2/5)+(2/5)^2+…+(2/5)^n+(3/5)+(3/5)^2+...+(3/5)^n]
=lim(n→∞)(2/5)[1-(2/5)^n]/(1-2/5)+lim(n→∞)(3/5)[1-(3/5)^n]/(1-3/5)
=(2/5)/(3/5)+(3/5)/(2/5)
=2/3+3/2
=13/6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询