(1)操作发现:如图1,D是等边三角形ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等

(1)操作发现:如图1,D是等边三角形ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边三角形DCF,连接AF.你能发现线段AF与BD之间的数... (1)操作发现:如图1,D是等边三角形ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边三角形DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图2,当动点D运动到等边三角形ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?如果成立,请证明;如果不成立,是否有新的结论?如果有新的结论,直接写出新的结论,不需证明.(3)深入探究:①如图3,当动点D在等边三角形ABC的边BA上运动时(点D与点B不重合),连接DC,以DC为边在其上方、下方分别作等边三角形DCF和等边三角形DCF',连接AF,BF′.探究AF,BF′与AB有何数量关系?直接写出你的结论,不需证明.②如图4,当动点D在等边三角形ABC的边BA的延长线上运动时,其他作法与图3相同,①中的结论是否仍然成立?如果成立,请证明;如果不成立,是否有新的结论?如果有新的结论,直接写出新的结论,不需证明. 展开
 我来答
长岛的雪丶拪
2014-12-01 · TA获得超过172个赞
知道答主
回答量:108
采纳率:100%
帮助的人:112万
展开全部
(1)∵∠BCA=∠DCF,
∴∠BCD=∠ACF,
在△BCD和△ACF中,
BC=AC
∠BCD=∠ACF
CF=CD

∴△BCD≌△ACF,(SAS),
∴BD=AF;
(2)∵∠BCA=∠DCF,
∴∠BCD=∠ACF,
在△BCD和△ACF中,
BC=AC
∠BCD=∠ACF
CF=CD

∴△BCD≌△ACF(SAS),
∴BD=AF;
(3)①∵∠BCA=∠DCF,
∴∠BCD=∠ACF,
在△BCD和△ACF中,
BC=AC
∠BCD=∠ACF
CF=CD

∴△BCD≌△ACF(SAS),
∴BD=AF
∵∠BCA=∠DCF',
∴∠BCF'=∠ACD,
在△BCF'和△ACD中,
BC=AC
∠ACD=∠BCF′
CD=CF′

∴△BCF'≌△ACD(SAS),
∴AD=BF',
∴AB=AF+BF';
②不成立,新结论为AB=AF-BF'.
证明∵∠BCA=∠DCF,
∴∠BCD=∠ACF,
在△BCD和△ACF中,
BC=AC
∠BCD=∠ACF
CF=CD

∴△BCD≌△ACF(SAS),
∴BD=AF;
∵∠BCA=∠DCF',
∴∠BCF'=∠ACD,
在△BCF'和△ACD中,
BC=AC
∠ACD=∠BCF′
CD=CF′

∴△BCF'≌△ACD(SAS),
∴AD=BF',
∴AB=AF-BF'.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式