线性代数,画波浪线的地方怎么求出来的⊙▽⊙
2个回答
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
【分析】
逆矩阵定义:若n阶矩阵A,B满足AB=BA=E,则称A可逆,A的逆矩阵为B。
【解答】
A³-A²+3A=0,
A²(E-A)+3(E-A)=3E,
(A²+3)(E-A) = 3E
E-A满足可逆定义,它的逆矩阵为(A²+3)/3
【评注】
定理:若A为n阶矩阵,有AB=E,那么一定有BA=E。
所以当我们有AB=E时,就可以直接利用逆矩阵定义。而不需要再判定BA=E。
对于这种抽象型矩阵,可以考虑用定义来求解。
如果是具体型矩阵,就可以用初等变换来求解。
线性代数包括行列式、矩阵、线性方程组、向量空间与线性变换、特征值和特征向量、矩阵的对角化,二次型及应用问题等内容。
逆矩阵定义:若n阶矩阵A,B满足AB=BA=E,则称A可逆,A的逆矩阵为B。
【解答】
A³-A²+3A=0,
A²(E-A)+3(E-A)=3E,
(A²+3)(E-A) = 3E
E-A满足可逆定义,它的逆矩阵为(A²+3)/3
【评注】
定理:若A为n阶矩阵,有AB=E,那么一定有BA=E。
所以当我们有AB=E时,就可以直接利用逆矩阵定义。而不需要再判定BA=E。
对于这种抽象型矩阵,可以考虑用定义来求解。
如果是具体型矩阵,就可以用初等变换来求解。
线性代数包括行列式、矩阵、线性方程组、向量空间与线性变换、特征值和特征向量、矩阵的对角化,二次型及应用问题等内容。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询