如图, Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E为BC边的中点,连接DE.(1)求证:DE与⊙O

如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E为BC边的中点,连接DE.(1)求证:DE与⊙O相切.(2)若tanC=,DE=2,求AD的长.... 如图, Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E为BC边的中点,连接DE.(1)求证:DE与⊙O 相切.(2)若tanC= ,DE=2,求AD的长. 展开
 我来答
手机用户05943
推荐于2016-11-11 · 超过58用户采纳过TA的回答
知道答主
回答量:111
采纳率:0%
帮助的人:109万
展开全部
(1)证明见解析;(2) .


试题分析:(1)连接OD,BD,求出∠ADB=∠BDC=90°,推出DE=BE=CE,推出∠EDB=∠EBD,∠OBD=∠ODB,推出∠EDO=∠EBO=90°即可.
(2)由∠BDC=90°,E为BC边的中点可得BC=4,在Rt△ABC中,由tanC= 可得AB=2 ,在Rt△ABC中,由勾股定理可得AC=6,由△ABD∽△ACB可求得AD= .
试题解析:(1)如图,连接BD、OD,
∵AB为⊙O的直径,∴∠ADB=∠BDC=90°.
∵E为BC边的中点,∴DE=EC.∴∠1=∠C.
∵OA=OD,∴∠2=∠A.
∵∠ABC=90°,∴∠A+∠C =90°.∴∠1+∠2 =90°.
∴∠ODE =90°.∴OD⊥DE于点D.
∵以AB为直径的⊙O交AC于点D,∴D是半径的外端.
∴DE与⊙O 相切.
(2)∵∠BDC=90°,E为BC边的中点,∴ .
∵DE=2,∴BC=4.
在Rt△ABC中,tanC= ,∴AB=BC· =2 .
在Rt△ABC中,AC=
又∵△ABD∽△ACB,∴ ,即 .
∴AD= .
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式