如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=kx(x>0)的图象经过BC的中

如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=kx(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E... 如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=kx(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式;(3)若点P(x,y)在该反比例函数的图象上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围. 展开
 我来答
手机用户60212
2014-10-12 · 超过56用户采纳过TA的回答
知道答主
回答量:110
采纳率:0%
帮助的人:137万
展开全部
(1)∵BC∥x轴,点B的坐标为(2,3),
∴BC=2,
∵点D为BC的中点,
∴CD=1,
∴点D的坐标为(1,3),
代入双曲线y=
k
x
(x>0),得
k=1×3=3;
∵BA∥y轴,
∴点E的横坐标与点B的横坐标相等,即x=2,
∵点E在双曲线上,
∴把x=2代入y=
3
x
,得到:y=
3
2

∴点E的坐标为(2,
3
2
);

(2)∵点E的坐标为(2,
3
2
),B的坐标为(2,3),点D的坐标为(1,3),
∴BD=1,BE=
3
2
,BC=2,
∵△FBC∽△DEB,
CF
DB
=
BC
EB
,即
CF
1
=
2
3
2

∴CF=
4
3

∴点F的坐标为(0,
5
3
),
设直线FB的解析式y=kx+b(k≠0),则
2k+b=3
b=
5
3

解得,
k=
2
3
b=
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消