设数列{an}的前n项和为Sn,已知a1=1,且an+2SnSn-1=0(n≥2),(1)求数列{Sn}的通项公式;(2)设Sn=1f
设数列{an}的前n项和为Sn,已知a1=1,且an+2SnSn-1=0(n≥2),(1)求数列{Sn}的通项公式;(2)设Sn=1f(n),bn=f(12n)+1.记P...
设数列{an}的前n项和为Sn,已知a1=1,且an+2SnSn-1=0(n≥2),(1)求数列{Sn}的通项公式;(2)设Sn=1f(n),bn=f(12n)+1.记Pn=S1S2+S2S3+…+SnSn+1,Tn=b1b2+b2b3+…+bnbn+1,试求Tn,并证明Pn<12.
展开
1个回答
展开全部
解答:(1)解:∵an+2SnSn-1=0(n≥2),
∴Sn-Sn-1+2SnSn-1=0.---------(3分)
∴
-
=2.
又∵a1=1,---------------(5分)
∴Sn=
(n∈N+).---------------(7分)
(2)证明:∵Sn=
,∴f(n)=2n-1.--------------------------(8分)
∴bn=2(
)-1+1=(
)n-1.---------------------------------------(9分)
Tn=(
)0?(
)1+(
)1?(
)2+…+(
)n-1?(
)n=(
)1+(
)3+(
)5+…+(
)2n-1
=
[1-(
)n].-------------------------------------------------------(11分)
∴Pn=
+
+…+
---------------(13分)
=
(1?
+
?
+…+
?
)=
(1?
)-------------------------------(14分)
∴Sn-Sn-1+2SnSn-1=0.---------(3分)
∴
1 |
Sn |
1 |
Sn?1 |
又∵a1=1,---------------(5分)
∴Sn=
1 |
2n?1 |
(2)证明:∵Sn=
1 |
f(n) |
∴bn=2(
1 |
2n |
1 |
2 |
Tn=(
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
=
2 |
3 |
1 |
4 |
∴Pn=
1 |
1×3 |
1 |
3×5 |
1 |
(2n?1)(2n+1) |
=
1 |
2 |
1 |
3 |
1 |
3 |
1 |
5 |
1 |
2n?1 |
1 |
2n+1 |
1 |
2 |
1 |
2n+1 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询