高数问题 求大神 14
1个回答
2015-01-13
展开全部
arctanx=y
则x=tany
dx=(1/cos^2y)dy
原式=∫[tany × y÷(1/cos^3y)×(1/cos^2y)]dy
=∫ysinydy
=-∫ydcosy
=-[ycosy-∫cosydy]
=-ycosy+siny+C
cosy=√[cos^2y/(cos^2y+sin^2y)]=√[1/(1+X^2)]
siny=√[sin^2y/(cos^2y+sin^2y)]=x/√(1+X^2)
所以原函数=(x-arctanx)/√(1+X^2)+C
则x=tany
dx=(1/cos^2y)dy
原式=∫[tany × y÷(1/cos^3y)×(1/cos^2y)]dy
=∫ysinydy
=-∫ydcosy
=-[ycosy-∫cosydy]
=-ycosy+siny+C
cosy=√[cos^2y/(cos^2y+sin^2y)]=√[1/(1+X^2)]
siny=√[sin^2y/(cos^2y+sin^2y)]=x/√(1+X^2)
所以原函数=(x-arctanx)/√(1+X^2)+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询