医学文献翻译求助
Electrontransferateachstepoftherespiratorychainisnotcompletelyefficient,resultinginth...
Electron transfer at each step of the respiratory chain is not completely efficient, resulting in the escape of electrons that reduce O2 to superoxide anion, which is converted to hydrogen peroxide by the action of manganese superoxide dismutase. These reactive oxygen species (ROS) have the potential to damage lipids, proteins, and nucleic acids, leading to cellular dysfunction or death.
Electron transport chain activity appears to be optimized for physiological PO2 and deviations from normal PO2 (in either direction) are associated with increased ROS production. The utilization of O2 for energy metabolism is a two-edged sword: the complete oxidation of glucose to CO2 and H2O greatly increases the yield of ATP as compared with the incomplete oxidation of glucose to lactate; however, the transfer
of electrons poses an inherent risk of ROS production. As a result, the cellular O2 concentration must be very tightly regulated through homeostatic mechanisms that control O2 delivery and O2 utilization. 展开
Electron transport chain activity appears to be optimized for physiological PO2 and deviations from normal PO2 (in either direction) are associated with increased ROS production. The utilization of O2 for energy metabolism is a two-edged sword: the complete oxidation of glucose to CO2 and H2O greatly increases the yield of ATP as compared with the incomplete oxidation of glucose to lactate; however, the transfer
of electrons poses an inherent risk of ROS production. As a result, the cellular O2 concentration must be very tightly regulated through homeostatic mechanisms that control O2 delivery and O2 utilization. 展开
展开全部
呼吸链每一步的电子转移并非完全高效的,会导致电子逃逸并将氧气还原成超氧阴离子自由基,通过锰超氧化物歧化酶的作用转化为过氧化氢。这些活性氧簇(ROS)有可能破坏脂类,蛋白质,核酸,导致细胞功能障碍或死亡。
随着活性氧簇的增加,生理氧分压的电子传递链活动似乎被优化了,从而偏离了正常氧分压(在任一方向)。利用氧能量代谢是一把双刃剑:完整的葡萄糖氧化为二氧化碳和水和不完全氧化的葡萄糖转化成乳酸相比,大大增加了三磷酸腺苷产量,然而,电子传递存在着活性氧簇产生的潜在危险。因此,细胞氧气浓度必须通过稳态机制进行严密调节来控制氧输送和氧利用。
随着活性氧簇的增加,生理氧分压的电子传递链活动似乎被优化了,从而偏离了正常氧分压(在任一方向)。利用氧能量代谢是一把双刃剑:完整的葡萄糖氧化为二氧化碳和水和不完全氧化的葡萄糖转化成乳酸相比,大大增加了三磷酸腺苷产量,然而,电子传递存在着活性氧簇产生的潜在危险。因此,细胞氧气浓度必须通过稳态机制进行严密调节来控制氧输送和氧利用。
展开全部
电子传递链的活动似乎是优化生理氧分压和偏离正常氧分压(在任一方向)是会增加活性氧的生产。利用氧能量代谢是一把双刃剑:完整的葡萄糖氧化为二氧化碳和水大大增加了产量的三磷酸腺苷相比,不完全氧化葡萄糖乳酸;然而,转让
电子构成潜在危险的活性氧的生产。因此,细胞氧气浓度必须非常严格管制,稳态机制,控制氧输送和氧利用。
欢迎采纳
电子构成潜在危险的活性氧的生产。因此,细胞氧气浓度必须非常严格管制,稳态机制,控制氧输送和氧利用。
欢迎采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
电子传递链的活动似乎是优化了生理警察乙和偏离正常的警察乙(在两个方向)会增加患ROS生产。利用O2对于能量代谢是一把双刃剑:完整的氧化葡萄糖与CO2和H2O大大增加了产量的ATP作为相比不完整的氧化葡萄糖与乳酸;然而,转移 提出了一种固有风险的电子的ROS生产。结果,细胞O2浓度一定很严格监管的通过自我平衡的机制,控制O2交付和O2利用率。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
急性早幼粒细胞白血病最初在1957年,即第一次美国社会血液肿瘤学会议(召开)一年前,被描述为一种独特的临床(病变)实体。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询