如图,OA⊥OC,OB⊥OD,且∠AoD=3∠BOC,求∠BOC的度数 要过程

 我来答
Lunyy
2014-12-07 · TA获得超过2623个赞
知道小有建树答主
回答量:194
采纳率:0%
帮助的人:22.3万
展开全部
由已知OA⊥OC,OB⊥OD,得∠BOD+∠AOC=180°,再利用角的和差关系将等式变形,得到∠AOD与∠BOC的一个等量关系,与已知∠AOD=3∠BOC联立,可求∠BOC.
解:∵OA⊥OC,OB⊥OD,
∴∠BOD=90°,∠AOC=90°,
∴∠BOD+∠AOC=180°,
即∠COD+∠BOC+∠AOB+∠BOC=180°,
∴∠AOD+∠BOC=180°,①
又∵∠AOD=3∠BOC,②
解①、②得∠BOC=45°.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式