STATA软件回归分析中 请解释一下ss df ms coef t F 等等这些是什么意思 ,哪个是表明相关性的系数的
展开全部
SS是平方和,它所在列的三个数值分别为回归误差平方和(SSE)、残差平方和(SSR)及总体平方和(SST),即分别为Model、Residual和Total相对应的数值。
df(degree of freedom)为自由度。
MS为SS与df的比值,与SS对应,SS是平方和,MS是均方,是指单位自由度的平方和。
coeft表明系数的,因为该因素t检验的P值是0.000,所以表明有很强的正效应,认为所检验的变量对模型是有显著影响的。
F是F test F 检验,联合显著检验值,是表明相关性的系数。
扩展资料:
Stata具有如下统计分析能力:
1、相关与回归分析:
简单相关,偏相关,典型相关,以及多达数十种的回归分析方法,如多元线性回归,逐步回归,加权回归,稳键回归,二阶段回归,百分位数 ( 中位数 ) 回归,残差分析、强影响点分析,曲线拟合,随机效应的线性回归模型等。
2、数值变量资料的一般分析:
参数估计,t检验,单因素和多因素的方差分析,协方差分析,交互效应模型,平衡和非平衡设计,嵌套设计,随机效应,多个均数的两两比较,缺项数据的处理,方差齐性检验,正态性检验,变量变换等。
展开全部
SS是平方和,它所在列的三个数值分别为回归误差平方和(SSE)、残差平方和(SSR)及总体平方和(SST),即分别为Model、Residual和Total相对应的数值。
df(degree of freedom)为自由度。
MS为SS与df的比值,与SS对应,SS是平方和,MS是均方,是指单位自由度的平方和。
coef.表明系数的,因为该因素t检验的P值是0.000,所以表明有很强的正效应,认为所检验的变量对模型是有显著影响的。
df(degree of freedom)为自由度。
MS为SS与df的比值,与SS对应,SS是平方和,MS是均方,是指单位自由度的平方和。
coef.表明系数的,因为该因素t检验的P值是0.000,所以表明有很强的正效应,认为所检验的变量对模型是有显著影响的。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
ss 平方和
ms 均方根
df为各自自由度
ms=ss/df
F是联合显著检验值
t 和p都是表明变量显著与否
coef是变量系数
相关性不用这个,用pwcorr
ms 均方根
df为各自自由度
ms=ss/df
F是联合显著检验值
t 和p都是表明变量显著与否
coef是变量系数
相关性不用这个,用pwcorr
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
引用skipalong88的回答:
SS是平方和,它所在列的三个数值分别为回归误差平方和(SSE)、残差平方和(SSR)及总体平方和(SST),即分别为Model、Residual和Total相对应的数值。
df(degree of freedom)为自由度。
MS为SS与df的比值,与SS对应,SS是平方和,MS是均方,是指单位自由度的平方和。
coef.表明系数的,因为该因素t检验的P值是0.000,所以表明有很强的正效应,认为所检验的变量对模型是有显著影响的。
SS是平方和,它所在列的三个数值分别为回归误差平方和(SSE)、残差平方和(SSR)及总体平方和(SST),即分别为Model、Residual和Total相对应的数值。
df(degree of freedom)为自由度。
MS为SS与df的比值,与SS对应,SS是平方和,MS是均方,是指单位自由度的平方和。
coef.表明系数的,因为该因素t检验的P值是0.000,所以表明有很强的正效应,认为所检验的变量对模型是有显著影响的。
展开全部
SSR和SSE写反了,大家注意一下。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询