高等数学偏导数问题

 我来答
crs0723
2015-06-23 · TA获得超过2.5万个赞
知道大有可为答主
回答量:1.6万
采纳率:85%
帮助的人:4451万
展开全部
根据题意,du/dx=1 du/dy=a dv/dx=1 dv/dy=3
所以dz/dx=dz/du*du/dx+dz/dv*dv/dx=dz/du+dz/dv
dz/dy=dz/du*du/dy+dz/dv*dv/dy=a*dz/du+3*dz/dv
所以d^2z/dx^2=d(dz/du+dz/dv)/dx
=d(dz/du)/du*du/dx+d(dz/du)/dv*dv/dx+d(dz/dv)/du*du/dx+d(dz/dv)/dv*dv/dx
=d^2z/du^2+2*d^2z/dudv+d^2z/dv^2
d^2z/dy^2=d(a*dz/du+3*dz/dv)/dy
=a*d(dz/du)/du*du/dy+a*d(dz/du)/dv*dv/dy+3*d(dz/dv)/du*du/dy+3*d(dz/dv)/dv*dv/dy
=a^2*d^2z/du^2+6a*d^2z/dudv+9*d^2z/dv^2
d^z/dxdy=d(dz/du+dz/dv)/dy
=d(dz/du)/du*du/dy+d(dz/du)/dv*dv/dy+d(dz/dv)/du*du/dy+d(dz/dv)/dv*dv/dy
=a*d^2z/du^2+(a+3)*d^2z/dudv+3*d^2z/dv^2
所以6*d^2z/dx^2+d^2z/dxdy-d^2z/dy^2=0
6*d^2z/du^2+12*d^2z/dudv+6d^2z/dv^2+a*d^2z/du^2+(a+3)*d^2z/dudv+3*d^2z/dv^2-a^2*d^2z/du^2-6a*d^2z/dudv-9*d^2z/dv^2=0
(6+a-a^2)*d^2z/du^2+(15-5a)*d^2z/dudv=0
(a-3)(a+2)*d^2z/du^2+(a-3)*d^2z/dudv=0
(a+2)*d^2z/du^2+d^2z/dudv=0
所以当a=-2时,d^2z/dudv=0
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式