已知函数f(x)=根号下2x+1,(1)判断函数f(x)的单调性,并证之。(2)求函数f(x)=根号下2x+1的最值。
展开全部
解:
(1)
f(x)是增函数
下面证明:
定义域2x+1≥0,得x≥-1/2
任取-1/2≤x1<x2,
f(x2)-f(x1)=√(2x2+1)-√(2x1+1)
=2(x2-x1)/[√(2x2+1)+√(2x1+1)]
因为x1<x2
所以x2-x1>0,
又√(2x2+1)+√(2x1+1)>0
所以f(x2)-f(x1)>0
即f(x2)>f(x1)
所以f(x)是增函数
(2)
又(1)知f(x)在x≥-1/2为增函数
所以f(x)=√(2x+1)≥f(-1/2)=0
所以f(x)的最小值为0
(1)
f(x)是增函数
下面证明:
定义域2x+1≥0,得x≥-1/2
任取-1/2≤x1<x2,
f(x2)-f(x1)=√(2x2+1)-√(2x1+1)
=2(x2-x1)/[√(2x2+1)+√(2x1+1)]
因为x1<x2
所以x2-x1>0,
又√(2x2+1)+√(2x1+1)>0
所以f(x2)-f(x1)>0
即f(x2)>f(x1)
所以f(x)是增函数
(2)
又(1)知f(x)在x≥-1/2为增函数
所以f(x)=√(2x+1)≥f(-1/2)=0
所以f(x)的最小值为0
来自:求助得到的回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询