求级数的收敛区间
∑(1到无穷)n!*2^(-nx)/n^n尤其是端点处的情况,帮忙说明一下,满意的话追加分数......
∑(1到无穷) n! * 2^(-nx) / n^n
尤其是端点处的情况,帮忙说明一下,满意的话追加分数... 展开
尤其是端点处的情况,帮忙说明一下,满意的话追加分数... 展开
1个回答
展开全部
用比值判别法(ratio test)
令an=n! * 2^(-nx) / n^n
a(n+1)/an=(n+1)2^(-x)*n^n/(n+1)^(n+1)
=2^(-x)*n^n/(n+1)^n
=2^(-x)*[n/(n+1)]^n
取极限=2^(-x){[1-1/(n+1)]^[(n+1)]}^(n/(n+1))
=2^(-x)[e^(-1)]^1
=1/(e*2^x)<1
即2^x>1/e
x>log 2 1/e= -1/ln2,收敛
当x=-1/ln2时,2^(-x)=e
an=n!(e^n)/(n^n)
因为n->无穷时
n!等价于(n/e)^n * 根号(2πn)
所以代入后得到
an~根号(2πn)
所以limn->无穷 an≠0
所以级数不收敛
所以收敛域只有
(-1/ln2,∞)
令an=n! * 2^(-nx) / n^n
a(n+1)/an=(n+1)2^(-x)*n^n/(n+1)^(n+1)
=2^(-x)*n^n/(n+1)^n
=2^(-x)*[n/(n+1)]^n
取极限=2^(-x){[1-1/(n+1)]^[(n+1)]}^(n/(n+1))
=2^(-x)[e^(-1)]^1
=1/(e*2^x)<1
即2^x>1/e
x>log 2 1/e= -1/ln2,收敛
当x=-1/ln2时,2^(-x)=e
an=n!(e^n)/(n^n)
因为n->无穷时
n!等价于(n/e)^n * 根号(2πn)
所以代入后得到
an~根号(2πn)
所以limn->无穷 an≠0
所以级数不收敛
所以收敛域只有
(-1/ln2,∞)
更多追问追答
追问
请问在x=-1/ln2处,接下来n!的等价量(n/e)^n * 根号(2πn)是怎么得到的??
还有,是否可以在-1/ln2点处用级数判别方法?
追答
是否可以在-1/ln2点处用级数判别方法?
不可以,因为n!的存在,其它判别法也失效
n!的等价量(n/e)^n * 根号(2πn)是公式~
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询