在三角形abc中,b=60° ab=8点d在bc上且cd=2 cos角adc=1/7求sinba 10
4个回答
展开全部
过A作底边的垂线,运用三角函数以及和差公式,可以求出sin∠BAD=√3*3/14
BD=3,AC=7
BD=3,AC=7
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
cos ADC=1/7, cosADB = -1/7
sin BAD = sin(180-B-ADB) = sin(B+ADB) = sinBcosADB+cosBsinADB
= sqrt(3)/2 * (-1/7) + 1/2 4sqrt(3)/7 = 3sqrt(3)/14
sinADB / AB = sinBAD/BD
BD = AB * sinBAD/sinADB = 8 * 3sqrt(3)/14 / (4sqrt(3)/7) = 3
BC = 5
AC^2 = AB^2 + BC^2 - 2AB*BC cosB = 8^2 + 5^2 - 8*5 = 49
AC = 7
sin BAD = sin(180-B-ADB) = sin(B+ADB) = sinBcosADB+cosBsinADB
= sqrt(3)/2 * (-1/7) + 1/2 4sqrt(3)/7 = 3sqrt(3)/14
sinADB / AB = sinBAD/BD
BD = AB * sinBAD/sinADB = 8 * 3sqrt(3)/14 / (4sqrt(3)/7) = 3
BC = 5
AC^2 = AB^2 + BC^2 - 2AB*BC cosB = 8^2 + 5^2 - 8*5 = 49
AC = 7
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询