随机变量分布函数Fx(x)=﹛1-X^-λ, x>1.时0,x<=1时. (λ>0) ,Y=lnX, 求Y的概率密度fy(y)

hhlcai
2012-10-24 · TA获得超过7030个赞
知道大有可为答主
回答量:1057
采纳率:100%
帮助的人:437万
展开全部
F(x)=1-x^(-λ) x>1
0 x≤1
假设Y的分布函数为G(y),则
G(y)=P(Y≤y)=P(lnX≤y)=P (X≤e^y)=F(e^y)
当e^y>1时,即y>0时,有G(y)=1-e^(-λy),
当e^y≤1时,即y≤0时,有G(y)=0
所以Y的分布函数为
G(y)=1-e^(-λy) y>0
0 y≤0
从而Y的概率密度函数
f(y)=G'(y)=λe^(-λy) y≥0
0 y<0
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式