【对角线相等的平行四边形是矩形】
设AC、BD是平行四边形ABCD的对角线,AC=BD,求证:四边形ABCD是矩形。
证明:
∵四边形ABCD是平行四边形,
∴AB=DC(平行四边形对边相等),
又∵AC=BD,BC=CB,
∴△ABC≌△DCB(SSS),
∴∠ABC=∠DCB,
∵AB//DC(平行四边形对边平行),
∴∠ABC+∠DCB=180°(两直线平行,同旁内角互补),
∴2∠ABC=180°(等量代换),
∴∠ABC=90°,
∴四边形ABCD是矩形(矩形定义:有一个角是直角的平行四边形是矩形)。