设a>0,b∈R,函数f(x)=a/x-2bx+b(0<x≤1) (I)求函数f(x)的最小值;

设a>0,b∈R,函数f(x)=a/x-2bx+b(0<x≤1)(I)求函数f(x)的最小值;(II)若f(x)+|2a-b|≥0在区间[0,m]上恒成立,求m的最大值。... 设a>0,b∈R,函数f(x)=a/x-2bx+b(0<x≤1)
(I)求函数f(x)的最小值;
(II)若f(x)+|2a-b|≥0在区间[0,m]上恒成立,求m的最大值。
求详解,要步骤。谢谢
展开
 我来答
suzhoupiaoxue
推荐于2017-09-12
知道答主
回答量:36
采纳率:0%
帮助的人:15.9万
展开全部
(1)对b进行讨论,当b>0 时该函数为减函数,该函数在x=1时取到最小值,当b=0时一样,当b<0时为该函数为对勾函数减增区间的交接点为根号下-2b/a,对根号下-2b/a与1的大小讨论
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式