cos(x+y)的绝对值且区域由y=x和y=0.x=兀/2构成的二重积分
推荐于2017-09-18
展开全部
直线x+y=π将积分区间分成2部分,左下部分记为D1,右上部分记为D2
则先积D1里的积分,在D1内,由于x+yπ] dx∫[0--->π-x] sin(x+y) dy
=-∫[0--->π] cos(x+y) |[0--->π-x] dx
=∫[0--->π] (cosx-cosπ) dx
=∫[0--->π] (cosx+1) dx
=sinx+x |[0--->π]
=π
对于D2,ππ] sin(x+y) dy
=∫[0--->π] cos(x+y) |[π-x--->π] dx
=∫[0--->π] (cos(π+x)-cosπ) dx
=∫[0--->π] (-cosx+1) dx
=-sinx+x |[0--->π]
则先积D1里的积分,在D1内,由于x+yπ] dx∫[0--->π-x] sin(x+y) dy
=-∫[0--->π] cos(x+y) |[0--->π-x] dx
=∫[0--->π] (cosx-cosπ) dx
=∫[0--->π] (cosx+1) dx
=sinx+x |[0--->π]
=π
对于D2,ππ] sin(x+y) dy
=∫[0--->π] cos(x+y) |[π-x--->π] dx
=∫[0--->π] (cos(π+x)-cosπ) dx
=∫[0--->π] (-cosx+1) dx
=-sinx+x |[0--->π]
2017-09-08
展开全部
解 记D={(x,y):0≤y≤x,0≤x≤π2},
D1={(x,y)∈D:x+y≤π2},D2={(x,y)∈D:x+y>π2},
则?Dcos(x+y)dxdy=?D1[-cos(x+y)
]dxdy+?D2|cos(x+y)|dxdy=∫π40dy∫π2?yycos(x+y)dx+∫π2π4dx∫xπ2?x[?cos(x+y)]dy=∫π40(1?sin2y)dy+∫π2π4(1?sin2x)dx=∫
D1={(x,y)∈D:x+y≤π2},D2={(x,y)∈D:x+y>π2},
则?Dcos(x+y)dxdy=?D1[-cos(x+y)
]dxdy+?D2|cos(x+y)|dxdy=∫π40dy∫π2?yycos(x+y)dx+∫π2π4dx∫xπ2?x[?cos(x+y)]dy=∫π40(1?sin2y)dy+∫π2π4(1?sin2x)dx=∫
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解 记D={(x,y):0≤y≤x,0≤x≤π2},D1={(x,y)∈D:x+y≤π2},D2={(x,y)∈D:x+y>π2},则?Dcos(x+y)dxdy=?D1[-cos(x+y)]dxdy+?D2|cos(x+y)|dxdy=∫π40dy∫π2?yycos(x+y)dx+∫π2π4dx∫xπ2?x[?cos(x+y)]dy=∫π40(1?sin2y)dy+∫π2π4(1?sin2x)dx=∫
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询