在新课标的理念下,如何进行函数概念的教学

莛嗳曉猴子344
2012-10-25
知道答主
回答量:15
采纳率:0%
帮助的人:4.4万
展开全部
学生在初学函数以及后续学习中,会遇到很多困难,这与教师在函数概念的教学中所采用的教学方式有着密切关系.以往教材的呈现方式和课堂讲授方法,虽然能较好地界定函数概念的内涵和外延,但由于函数概念本身的抽象性,学生接受起来还是有较大的困难.新课标更多地强调在数学情境下,学生主动进行知识的建构.
函数概念的引入,需要教师创设符合学生实际的数学情境.从贴近学生实际出发,教材中给出了三个具体的实例,供选择使用.三个例子分别用解析法、列表法和图像法给出,意在呼应下一节的三种表示法.教学中也可以结合所教班级的实际再补充一些实例,如加油站给汽车加油时油量与金额之间的关系等.
因为学生初中对函数已经有了初步的认识,进入高中后又学习了集合的概念,函数的概念引入,可以从让学生利用集合语言描述函数特征开始,可以设计如下问题串:
在进一步体会两个变量之间的依赖关系的基础上,学习用集合与对应的语言来刻画单值对应,领悟函数就是从一个数集到另一个数集的单值对应.单值对应是函数对应法则的根本特征。箭头图给出了单值对应从一个集合到另一个集合的方向性,应突出输入与输出的关系.
在构建函数的概念时,要重点突出一个对象对另一个对象的依赖关系.建立函数,必须交代定义域.但是,对定义域和值域不作过多技巧要求和训练.
在函数定义的教学过程中,需突出以下几点:①集合A与集合B都是非空数集;
②对应法则的方向是从A到B;③强调非空、每一个、惟一这三个关键词.
要注意发展学生的数感、符号感.用课本中旁注的示意图帮助学生理解符号f(x)的意义:对应法则f对自变量x作用.应强调函数符号y=f(x)是y是x的函数的数学表示,它表示f对x作用得到y.应指出f(a)与f(x)既有区别又有联系,f(a)是f(x)在x=a的情况下的一个函数值,一般地,f(a)是一个特殊值,而f(x)是一个变量.
现代信息技术的引入,为学生进一步体会、理解函数的本质,为求函数值、作函数的图像,提供了新的行之有效的工具.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式