求∫(2x+3)/(x²+2x+2)dx
1个回答
展开全部
2x+3= (2x+2) +1
∫(2x+3)/(x^2+2x+2)dx
=∫(2x+2)/(x^2+2x+2)dx +∫dx/(x^2+2x+2)
=ln|x^2+2x+2| +∫dx/(x^2+2x+2)
consider
x^2+2x+2 =(x+1)^2 +1
let
x+1= tany
dx =(secy)^2. dy
∫dx/(x^2+2x+2)
=∫ dy
=y
= arctan(x+1)
∫(2x+3)/(x^2+2x+2)dx
=ln|x^2+2x+2| +∫dx/(x^2+2x+2)
=ln|x^2+2x+2| +arctan(x+1) + C
∫(2x+3)/(x^2+2x+2)dx
=∫(2x+2)/(x^2+2x+2)dx +∫dx/(x^2+2x+2)
=ln|x^2+2x+2| +∫dx/(x^2+2x+2)
consider
x^2+2x+2 =(x+1)^2 +1
let
x+1= tany
dx =(secy)^2. dy
∫dx/(x^2+2x+2)
=∫ dy
=y
= arctan(x+1)
∫(2x+3)/(x^2+2x+2)dx
=ln|x^2+2x+2| +∫dx/(x^2+2x+2)
=ln|x^2+2x+2| +arctan(x+1) + C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询