如何证明圆内一点P到圆的最大距离与最小距离

 我来答
lj20000423
2015-09-12 · TA获得超过8.1万个赞
知道大有可为答主
回答量:2.2万
采纳率:24%
帮助的人:5593万
展开全部

如图所示,过点P作直径AB,则PA是点P到圆的最大距离,PB是点P到圆的最小距离
证明如下:
在圆上任取一点不同于点A的点A',连接OA',PA'
则有PO+OA'>PA',
而PO+OA'=PO+OA=PA.(因为OA,OA'都是半径)
所以PA>PA'
因为A'是不同于A的圆上任意一点
所以PA是点P到圆的最大距离
同理在圆上取不同于点B的点B'
可证得OP+PB'>OB'=OB=OP+PB
所以PB<PB'
即PB是点P到圆的最小距离.

匿名用户
2015-09-12
展开全部
以圆心与P点画一条直线并延长相交于圆,一看就知道了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式