求不等式log1/2(x+1)≥log2(2x+1)的解集
展开全部
log1/2(x+1)
=[log2(x+1)]/log2(1/2)
=[log2(x+1)]/log2(2^-1)
=-log2(x+1)
=log2(x+1)^(-1)
=log2[1/(x+1)]
∴log1/2(x+1)≥log2(2x+1)
=>log2[1/(x+1)]≥log2(2x+1)
∴
{1/(x+1)≥2x+1
{x+1>0
{2x+1>0
解出-1/2<x≤0
=[log2(x+1)]/log2(1/2)
=[log2(x+1)]/log2(2^-1)
=-log2(x+1)
=log2(x+1)^(-1)
=log2[1/(x+1)]
∴log1/2(x+1)≥log2(2x+1)
=>log2[1/(x+1)]≥log2(2x+1)
∴
{1/(x+1)≥2x+1
{x+1>0
{2x+1>0
解出-1/2<x≤0
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询