计算1\1×2×3×4+1\2×3×4×5+...+1\7×8×9×10 快快!
2个回答
展开全部
这是一个1/n(n+1)(n+2)(n+3)的形式的和
n(n+3)=n^2+3n;
(n+1)(n+2)=n^2+3n+1;
(n+1)(n+2)-n(n+3)=1
则原来的式子可以写成:
1/n(n+1)(n+2)(n+3)
=[(n+1)(n+2)-n(n+3)]/[n(n+1)(n+2)(n+3)]
=1/[n(n+3)]-1/[(n+2)(n+1)]
=1/2[1/n-1/(n+3)+1/(n+2)-1/(n+1)]
∴原式=1/2(1-1/2+1/3-1/4)+1/2(1/2-1/3+1/4-1/5)+……+1/2(1/7-1/8+1/9-1/10)
=1/2[(1-1/2+1/3-1/4)+(1/2-1/3+1/4-1/5)+……+(1/7-1/8+1/9-1/10)]
=1/2(1-1/2+1/3-1/4+1/2-1/3+1/4-1/5+……+1/7-1/8+1/9-1/10)
=1/2(1-1/10)
=1/2*9/10
=9/20
此题必对,ohla
n(n+3)=n^2+3n;
(n+1)(n+2)=n^2+3n+1;
(n+1)(n+2)-n(n+3)=1
则原来的式子可以写成:
1/n(n+1)(n+2)(n+3)
=[(n+1)(n+2)-n(n+3)]/[n(n+1)(n+2)(n+3)]
=1/[n(n+3)]-1/[(n+2)(n+1)]
=1/2[1/n-1/(n+3)+1/(n+2)-1/(n+1)]
∴原式=1/2(1-1/2+1/3-1/4)+1/2(1/2-1/3+1/4-1/5)+……+1/2(1/7-1/8+1/9-1/10)
=1/2[(1-1/2+1/3-1/4)+(1/2-1/3+1/4-1/5)+……+(1/7-1/8+1/9-1/10)]
=1/2(1-1/2+1/3-1/4+1/2-1/3+1/4-1/5+……+1/7-1/8+1/9-1/10)
=1/2(1-1/10)
=1/2*9/10
=9/20
此题必对,ohla
展开全部
1/n(n+1)(n+2)(n+3)=[1/n(n+1)(n+2)-1/(n+1)(n+2)(n+3)]/3
1/1×2×3×4+1/2×3×4×5+...+1/7×8×9×10
=(1/1*2*3-1/2*3*4+1/2*3*4-1/3*4*5+...+1/7*8*9-1/8*9*10)/3
=(1/1*2*3-1/8*9*10)/3
=(1/6-1/720)/3
=119/2160
1/1×2×3×4+1/2×3×4×5+...+1/7×8×9×10
=(1/1*2*3-1/2*3*4+1/2*3*4-1/3*4*5+...+1/7*8*9-1/8*9*10)/3
=(1/1*2*3-1/8*9*10)/3
=(1/6-1/720)/3
=119/2160
追问
稍等,等我知道正确答案后才能给你加财富值!
等6小时 呵呵
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询