二次项是什么意思
未知数是二次方就是二次项,比如5x^2,x^2就是二次项。
二次函数y=ax^2+bx+c(a≠0),其中二次项x^2前面的系数a叫做二次项系数,x前面的系数b叫做一次项系数,c叫做常数项。
二次项定理的公式为(a+b)^n=Cn0·a^n+Cn1 ·a^n-1·b+…+Cnr·a^n-r·b^r+…+Cnn·b^n(n∈N﹢)
这个公式所表示的规律叫做二次项定理,等式右边的多项式叫做(a+b)^n的二项展开式,它一共有n+1项,其中各项系数Cnr(r=0,1,…,n)叫做展开式的二项式系数。展开式中的Cnr·a^n-r·b^r项叫做二项展开式的通项。
扩展资料
1、二项式定理是恒等式,要注意公式的正用和逆用:
从左往右用,可解决如整除性问题、余数问题、近似计算等;
从右往左用,是把一个多项式合并,或者是一个求和公式,利用它可解决某些求和的问题。
2.、对二项式系数、系数、常数项、项数等概念需要加以分析,结合通项公式进行重点训练
3.、在熟练掌握二项式所有性质的基础上,进一步掌握二项式有关性质的证明方法,其中最重要的方法是赋值法。
赋值法是解决二项展开式中有关系数问题的重要手段,许多复杂的有关系数的问题均可利用赋值法解决。
2024-09-23 广告
未知数是二次方就是二次项,比如5x^2,x^2就是二次项。
二次函数y=ax^2+bx+c(a≠0),其中二次项x^2前面的系数a叫做二次项系数,x前面的系数b叫做一次项系数,c叫做常数项。
二项式定理(英语:Binomial theorem),又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。
扩展资料
二项式定理:
其中,
,又有
等记法,称为二项式系数,此系数亦可表示为杨辉三角形。等式的右边
的展开式,称为二项展开式。
二次项的性质
(1)项数:n+1项
(2)第k+1项的二项式系数是
(3)在二项展开式中,与首末两端等距离的两项的二项式系数相等。
(4)如果二项式的幂指数是偶数,中间的一项的二项式系数最大。如果二项式的幂指数是奇数,中间两项的的二项式系数最大,并且相等。
未知数是二次方就是二次项,比如5x^2,x^2就是二次项。
未知数是几次方就是几次项,再如a³,5a³这些都是三次项。
5x^2是一个二次项,其中5x^2中的5是二次项系数。
x^2是一个二次项,其中x^2中的1是二次项系数。
扩展资料:
二次函数y=ax^2+bx+c(a≠0),其中二次项x^2前面的系数a叫做二次项系数,x前面的系数b叫做一次项系数,c叫做常数项。
一次项系数b和二次项系数a共同决定对称轴的位置。
1、当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号
2、当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号。
二次项定理的公式为(a+b)^n=Cn0·a^n+Cn1 ·a^n-1·b+…+Cnr·a^n-r·b^r+…+Cnn·b^n(n∈N﹢)
这个公式所表示的规律叫做二次项定理,等式右边的多项式叫做(a+b)^n的二项展开式,它一共有n+1项,其中各项系数Cnr(r=0,1,…,n)叫做展开式的二项式系数。展开式中的Cnr·a^n-r·b^r项叫做二项展开式的通项。
二项式定理最初用于开高次方。在中国,成书于1世纪的《九章算术》提出了世界上最早的多位正整数开平方、开立方的一般程序。11世纪中叶,贾宪在其《释锁算书》中给出了“开方作法本原图”,满足了三次以上开方的需要。
但是,贾宪并未给出二项式系数的一般公式,因而未能建立一般正整数次幂的二项式定理。13世纪,杨辉在其《详解九章算法》中引用了此图,并注明了此图出自贾宪的《释锁算书》。贾宪的著作已经失传,而杨辉的著作流传至今,所以今称此图为“贾宪三角”或“杨辉三角”。
在阿拉伯,10世纪,阿尔 ·卡拉吉已经知道二项式系数表的构造方法:每一列中的任一数等于上一列中同一行的数加上该数上面一数。11~12世纪奥马海牙姆将印度人的开平方、开立方运算推广到任意高次,因而研究了高次二项展开式。
13世纪纳绥尔丁在其《算板与沙盘算法集成》中给出了高次开方的近似公式,并用到了二项式系数表。15世纪,阿尔 ·卡西在其《算术之钥》中介绍了任意高次开方法,并给出了直到九次幂的二项式系数表,还给出了二项式系数表的两术书中给出了一张二项式系数表,其形状与贾宪三角一样。
就是说含未知数的幂是2的项,比如5X²,就是一个二次项,5是二次项系数。
任何一个一元二次方程都可以转换成 ax^2+bx+c=0 (a≠0)。
这里面 a就是二次项系数。
也就是说,(a的一次幂+x的一次幂)整个整体,为二次项。
扩展资料:
在一元二次方程或二次函数中,二次项系数的作用是决定函数图像的开口方向和开口大小,同时也运用在分析和求解二次不等式的根中。
二次项定理的公式为(a+b)^n=Cn0·a^n+Cn1 ·a^n-1·b+…+Cnr·a^n-r·b^r+…+Cnn·b^n(n∈N﹢)
这个公式所表示的规律叫做二次项定理,等式右边的多项式叫做(a+b)^n的二项展开式,它一共有n+1项,其中各项系数Cnr(r=0,1,…,n)叫做展开式的二项式系数。展开式中的Cnr·a^n-r·b^r项叫做二项展开式的通项。
推荐于2017-11-25