已知如图,A B C D为圆O上的四点. (1)若弧AB=2弧CD,试判断AB与CD的数量关系,并说明理由 (2)若角AOB=2角COD... (2)若角AOB=2角COD 展开 2个回答 #热议# 为什么有人显老,有人显年轻? z09information 推荐于2016-12-01 · TA获得超过1.3万个赞 知道大有可为答主 回答量:3098 采纳率:0% 帮助的人:3054万 我也去答题访问个人页 关注 展开全部 解:⑴CD<AB<2CD;理由如下:设2弧CD=弧AB=2m°≦180°,取弧AB的中点E并连接EA,EB,∴弧EA=弧EB=弧CD=m°≦90°∴EA=EB=CD,在△EAB中∠EAB=∠EBA=½m°≦45°,∠E=180°-﹙∠EAB+∠EBA﹚=﹙180-m)°≧90°>∠EAB∴EB<AB<EA+EB即CD<AB<2CD⑵结论和过程基本同⑴因为角AOB=2角COD所以弧AB=2弧CD。 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 陌上花开星烁 2012-10-31 知道答主 回答量:36 采纳率:0% 帮助的人:10万 我也去答题访问个人页 关注 展开全部 1)若弧AB=2弧CD,∠AOB=2∠CODAB=2rsim1/2∠AOB=2rsin∠CODsin∠COD=2sin1/2∠CODcos∠CODAB=4rsin1/2∠CODcos∠1/2CODCD=2rsin1/2∠CODAB/cd=2cos1/2∠COD0<cos1/2∠COD<1AB≠2CD,AB>CD(2)若角AOB=2角COD,结果一样,看上面证明过程。 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: