3个回答
展开全部
推荐答案是错误的。
正确解答:
由x²+xy=2得x(x+y)=2,
由y²+xy=7得y(x+y)=7,两个式子相比得到2y=7x,
因此2(x²+xy)=2*2=4,即2x²+2xy=2x²+x(7x)=9x²=4,得x²=4/9;
同理,7(y²+xy)=7*7=49,即7y²+7xy=7y²+(2y)y=9y²=49,得y²=49/9;
xy=2xy/2=7x²/2=(7/2)*(4/9)=14/9;
因此:x²+xy+y²=4/9+14/9+49/9=67/9。
正确解答:
由x²+xy=2得x(x+y)=2,
由y²+xy=7得y(x+y)=7,两个式子相比得到2y=7x,
因此2(x²+xy)=2*2=4,即2x²+2xy=2x²+x(7x)=9x²=4,得x²=4/9;
同理,7(y²+xy)=7*7=49,即7y²+7xy=7y²+(2y)y=9y²=49,得y²=49/9;
xy=2xy/2=7x²/2=(7/2)*(4/9)=14/9;
因此:x²+xy+y²=4/9+14/9+49/9=67/9。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-10-31
展开全部
楼上的我没看懂x²+y²+xy怎么就等于(x+y)²-(x+y)了,咋感觉是65/9
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询