微积分 极限 如图
3个回答
展开全部
1.
x→0
lim √(1-cosx) / sinx
利用等价无穷小:sinx~x,1-cosx~x^2/2
=lim √(x^2/2) / x
=√(1/2)*lim √(x^2)/x
右极限:
=√(1/2)*lim √(x^2)/x
=√(1/2)*1
=√2/2
左极限:
=√(1/2)*lim √(x^2)/x
=√(1/2)*(-1)
=-√2/2
因为左右极限存在但不相等,故原极限不存在
2.
x→1
lim (1/(1-x) - 1/(1-x^3))
=lim ( 1/(1-x) - 1/(1-x)(1+x+x^2) )
=lim (1+x+x^2-1) / (1-x)(1+x+x^2)
=lim (x+x^2) / (1-x)(1+x+x^2)
x+x^2趋于2,1-x^3趋于0
故,原极限不存在
有不懂欢迎追问
x→0
lim √(1-cosx) / sinx
利用等价无穷小:sinx~x,1-cosx~x^2/2
=lim √(x^2/2) / x
=√(1/2)*lim √(x^2)/x
右极限:
=√(1/2)*lim √(x^2)/x
=√(1/2)*1
=√2/2
左极限:
=√(1/2)*lim √(x^2)/x
=√(1/2)*(-1)
=-√2/2
因为左右极限存在但不相等,故原极限不存在
2.
x→1
lim (1/(1-x) - 1/(1-x^3))
=lim ( 1/(1-x) - 1/(1-x)(1+x+x^2) )
=lim (1+x+x^2-1) / (1-x)(1+x+x^2)
=lim (x+x^2) / (1-x)(1+x+x^2)
x+x^2趋于2,1-x^3趋于0
故,原极限不存在
有不懂欢迎追问
展开全部
用洛必达法则
(1)lim[√(1-cosx)/sinx]
=lim[√(2sin²t)/(2sintcost)] (x=2t)
=√2/2lim[|sint|/(sintcost)]
当t->-0时(左趋近),sint<0
原式=√2/2lim[-1/cost]
=√2/2*(-1)
=-√2/2
当t->+0时(右趋近),sint>0
原式=√2/2lim[1/cost]=√2/2
(2)lim[1/(1-x)-1/(1-x³)]
=lim[(1+x+x²-1)/(1-x³)]
=lim[(x+x²)/(1-x³)]
=lim[(1+2x)/(-3x²)]
=(1+2)/(-3)
=-1
(1)lim[√(1-cosx)/sinx]
=lim[√(2sin²t)/(2sintcost)] (x=2t)
=√2/2lim[|sint|/(sintcost)]
当t->-0时(左趋近),sint<0
原式=√2/2lim[-1/cost]
=√2/2*(-1)
=-√2/2
当t->+0时(右趋近),sint>0
原式=√2/2lim[1/cost]=√2/2
(2)lim[1/(1-x)-1/(1-x³)]
=lim[(1+x+x²-1)/(1-x³)]
=lim[(x+x²)/(1-x³)]
=lim[(1+2x)/(-3x²)]
=(1+2)/(-3)
=-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、分别求左右极限,结果极限不存在。
2、同1
2、同1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询