两条对角线把梯形ABCD分割成四个三角形,如图所示,已知两个三角形的面积,求另两个三角形的面积各是多少
5个回答
展开全部
我们知道,如果两个三角形是同底等高的,那么它们的面积就相等。所以,BDC的面积=ABC的面积,所以BDC-COD的面积=ABC-COD的面积,即:COD的面积=AOB的面积=6,
我们还知道,如果两个三角形的高相等,那么面积的比就等于底边的比。
由三角形BOC等于12 三角形AOB等于6,可知:AO:OC=1:2,由此可得出:AOD的面积:COD的面积=1:2,所以AOD的面积=6÷2=3
所以:COD的面积=6,AOD的面积=3
我们还知道,如果两个三角形的高相等,那么面积的比就等于底边的比。
由三角形BOC等于12 三角形AOB等于6,可知:AO:OC=1:2,由此可得出:AOD的面积:COD的面积=1:2,所以AOD的面积=6÷2=3
所以:COD的面积=6,AOD的面积=3
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
S(ABC) = S(ABD) 因此 S(AOD) = S(BOC) = 12
S(ABC) = 12+6 = 18
S(ABC)/S(ABO) = 18/6 = 3/1
因此过O点做垂线EF,垂直与AB于E,垂直于BD于F,有EF/EO = 3/1,于是OF/OE=2/1
因为AOB相似于COD,所以CD/AB = OD/OB = OF/OE = 2/1
因此S(COD) = 4*S(AOB) = 24
S(ABC) = 12+6 = 18
S(ABC)/S(ABO) = 18/6 = 3/1
因此过O点做垂线EF,垂直与AB于E,垂直于BD于F,有EF/EO = 3/1,于是OF/OE=2/1
因为AOB相似于COD,所以CD/AB = OD/OB = OF/OE = 2/1
因此S(COD) = 4*S(AOB) = 24
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
3和6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
图呢?
另外两个也是12和6吧,因为是同底同高啊。
另外两个也是12和6吧,因为是同底同高啊。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询