如图,在三角形ABC中,AD是角BAC的角平分线,AD的垂直平分线分别交AB,AC于点E,F试说明四边形AEDF是菱形。
4个回答
展开全部
在三角形ABC中,AD是角BAC的角平分线,AD的垂直平分线分别交AB,AC于点E,F试说明四边形AEDF是菱形。
AD是角BAC的角平分线,<EAD=<FAD
EF是AD的垂直平分线,<ADE=<ADF
AD=AD
所以三角形ADE,ADF全等.
EF与AD互相垂直平分, AE=AF
同理可证AF=FD,FD=ED,AE=ED
四边形四边相等,所以是平行四边形,且EF与AD互相垂直平分,所以是菱形
AD是角BAC的角平分线,<EAD=<FAD
EF是AD的垂直平分线,<ADE=<ADF
AD=AD
所以三角形ADE,ADF全等.
EF与AD互相垂直平分, AE=AF
同理可证AF=FD,FD=ED,AE=ED
四边形四边相等,所以是平行四边形,且EF与AD互相垂直平分,所以是菱形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设AD,EF交于O,
(1)∴EF垂直平分AD,
∴AE=DE,AF=DF。
(2)由AD平分∠BAC,AO是公共边,
∴△AEO≌△AFO(ASA)
∴AE=AF,
即AE=ED=DF=FA,
∴四边形AEDF是菱形。
(1)∴EF垂直平分AD,
∴AE=DE,AF=DF。
(2)由AD平分∠BAC,AO是公共边,
∴△AEO≌△AFO(ASA)
∴AE=AF,
即AE=ED=DF=FA,
∴四边形AEDF是菱形。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵E、F都在AD的中垂线上,∴AE=DE、AF=DF,∴∠EAD=∠EDA、∠FAD=∠FDA,
而∠EAD=∠FAD,∴∠EDA=∠FDA,又AD=AD,∴△ADE≌△ADF,∴AE=AF,
∴AE=AF=DE=DF,∴AEDF是菱形。
而∠EAD=∠FAD,∴∠EDA=∠FDA,又AD=AD,∴△ADE≌△ADF,∴AE=AF,
∴AE=AF=DE=DF,∴AEDF是菱形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询