展开全部
y=x²/(x²+2x-3)
lim<x→∞>f(x)
=lim<x→∞>x²/(x²+2x-3)
=lim<x→∞>f(x)1/(1+2/x-3/x²)
=1
y=x²/(x²+2x-3)的水平渐近线为y=1
lim<x→x0>f(x)
=lim<x→x0>x²/(x²+2x-3)
当x²+2x-3=0即x0=-3或1时,lim<x→x0>f(x)=∞
y=x²/(x²+2x-3)的铅直渐近线为x=-3和x=1
lim<x→∞>f(x)/x
=lim<x→∞>x²/x(x²+2x-3)
=lim<x→∞>x/(x²+2x-3)
=lim<x→∞>(1/x)/(1+2/x-3/x²)
=0
y=x²/(x²+2x-3)没有斜渐近线
y=(x²-3x+2)/(1-x²)
lim<x→∞>f(x)
=lim<x→∞>(x²-3x+2)/(1-x²)
=lim<x→∞>(1-3/x+2/x²)/(1/x²-1)
=-1
y=(x²-3x+2)/(1-x²)的水平渐近线为y=-1
lim<x→x0>f(x)
=lim<x→x0>(x²-3x+2)/(1-x²)
当1-x²=0即x0=-1或1时,lim<x→x0>f(x)=∞
y=(x²-3x+2)/(1-x²)的铅直渐近线为x=-1和x=1
lim<x→∞>f(x)/x
=lim<x→∞>(x²-3x+2)/x(1-x²)
=lim<x→∞>(1/x-3/x²+2/x³)/(1/x²-1)
=0
y=(x²-3x+2)/(1-x²)没有斜渐近线
若lim<x→∞>f(x)=a,则y=a为f(x)的水平渐近线
若lim<x→x0>f(x)=∞,则x=x0为f(x)的铅直渐近线
若lim<x→∞>f(x)/x=k、lim<x→∞>[f(x)-kx]=b,则y=kx+b为f(x)的斜渐近线
lim<x→∞>f(x)
=lim<x→∞>x²/(x²+2x-3)
=lim<x→∞>f(x)1/(1+2/x-3/x²)
=1
y=x²/(x²+2x-3)的水平渐近线为y=1
lim<x→x0>f(x)
=lim<x→x0>x²/(x²+2x-3)
当x²+2x-3=0即x0=-3或1时,lim<x→x0>f(x)=∞
y=x²/(x²+2x-3)的铅直渐近线为x=-3和x=1
lim<x→∞>f(x)/x
=lim<x→∞>x²/x(x²+2x-3)
=lim<x→∞>x/(x²+2x-3)
=lim<x→∞>(1/x)/(1+2/x-3/x²)
=0
y=x²/(x²+2x-3)没有斜渐近线
y=(x²-3x+2)/(1-x²)
lim<x→∞>f(x)
=lim<x→∞>(x²-3x+2)/(1-x²)
=lim<x→∞>(1-3/x+2/x²)/(1/x²-1)
=-1
y=(x²-3x+2)/(1-x²)的水平渐近线为y=-1
lim<x→x0>f(x)
=lim<x→x0>(x²-3x+2)/(1-x²)
当1-x²=0即x0=-1或1时,lim<x→x0>f(x)=∞
y=(x²-3x+2)/(1-x²)的铅直渐近线为x=-1和x=1
lim<x→∞>f(x)/x
=lim<x→∞>(x²-3x+2)/x(1-x²)
=lim<x→∞>(1/x-3/x²+2/x³)/(1/x²-1)
=0
y=(x²-3x+2)/(1-x²)没有斜渐近线
若lim<x→∞>f(x)=a,则y=a为f(x)的水平渐近线
若lim<x→x0>f(x)=∞,则x=x0为f(x)的铅直渐近线
若lim<x→∞>f(x)/x=k、lim<x→∞>[f(x)-kx]=b,则y=kx+b为f(x)的斜渐近线
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询