对称式轮换式的因式分解有何特点

 我来答
沛沛猪的母婴小智慧
高粉答主

2016-07-25 · 醉心答题,欢迎关注
知道大有可为答主
回答量:1.2万
采纳率:94%
帮助的人:1010万
展开全部
  对称式轮换式的因式分解特点:
  1、轮换式也称为轮换对称式。
  2、对称式一定是轮换式,轮换式不一定是对称式。

  因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等.
河南省新消消防安全设备有限公司
2019-04-18 广告
河南省新消消防安全设备有限公司是国内较早从事固定式消防泵组、移动式消防泵组及泡沫灭火系统的设计、开发、生产、销售、服务的企业之一,拥有国内先进的试验设备和质量检验装置,是政府消防产品定点生产厂,是河南省消防协会团体会员,是消防安全设备的专业... 点击进入详情页
本回答由河南省新消消防安全设备有限公司提供
overstand
高粉答主

2016-10-18 · 繁杂信息太多,你要学会辨别
知道大有可为答主
回答量:1.4万
采纳率:88%
帮助的人:1678万
展开全部
如果一个n元代数式f(x1,x2,...,xn),如果将字母x1,x2,...xn以x2代替x1,x3代替x2,...xn代替xn-1,x1代替xn后代数式不变,即f(x1,x2,...xn)=f(x2,x3,...xn,x1),那么称这个代数为n元轮换式。
举例一:
A^2+B^2+C^2显然是轮换对称式

那么两两组合的话前面已经有板有3次因子(A+B)(B+C)(C+A),剩下2次的空间,所以看两次的组合只有两种

A^2+B^2+C^2,AB+BC+CA,所以用待定系数K(A^2+B^2+C^2)+m(AB+BC+CA)

举例二:

(1) 对于曲面积分,积分曲面为u(x,y,z)=0,如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)仍等于0,即u(y,z,x)=0, 也就是积分曲面的方程没有变,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(y,z,x)dS;如果将函数u(x,y,z)=0中的x,y,z换成y,x,z后,u(y,x,z)=0,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(y,x,z)dS;如果将函数u(x,y,z)=0中的x,y,z换成z,x,y后,u(z,x,y)=0,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(z,x,y)dS ,同样可以进行多种其它的变换。

(2) 对于第二类曲面积分只是将dxdy也同时变换即可。比如:如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)=0,那么在这个曲面上的积 分 ∫∫f(x,y,z)dxdy=∫∫f(y,z,x)dydz,∫∫f(x,y,z)dydz=∫∫f(y,z,x)dzdx, ∫∫f(x,y,z)dzdx=∫∫f(y,z,x)dxdy.

(3) 将1中积分曲面中的z去掉,就变成了曲线积分满足的轮换对称性:积分曲线为u(x,y)=0,如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)= 0,那么在这个曲线上的积分 ∫∫f(x,y)ds=∫∫f(y,x)ds;实际上如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)=0,则意味着积分曲线关于直线y=x对称 。第二类和(2)总结相同。

(4) 二重积分和三重积分都和(1)的解释类似,也是看积分域函数将x,y,z更换顺序后,相当于将坐标轴重新命名,积分取间没有发生变化,则被积函数作相应变换后,积分值不变。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式