复合函数的求导
展开全部
1.设u=g(x),对f(u)求导得:f'(x)=f'(u)*g'(x);2.设u=g(x),a=p(u),对f(a)求导得:f'(x)=f'(a)*p'(u)*g'(x);
设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为D_。
M_∩Du≠_,那么对于M_∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数(compositefunction)。
设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为D_。
M_∩Du≠_,那么对于M_∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数(compositefunction)。
展开全部
复合函数的求导公式
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
复合函数求导的前提:复合函数本身及所含函数都可导。
法则1:设u=g(x)
f'(x)=f'(u)*g'(x)
法则2:设u=g(x),a=p(u)
f'(x)=f'(a)*p'(u)*g'(x)
例如:
1、求:函数f(x)=(3x+2)^3+3的导数
设u=g(x)=3x+2
f(u)=u^3+3
f'(u)=3u^2=3(3x+2)^2
g'(x)=3
f'(x)=f'(u)*g'(x)=3(3x+2)^2*3=9(3x+2)^2
2、求f(x)=√[(x-4)^2+25]的导数
设u=g(x)=x-4,a=p(u)=u^2+25
f(a)=√a
f'(a)=1/(2√a)=1/{2√[(x-4)^2+25]}
p'(u)=2u=2(x-4)
g'(x)=1
f'(x)=f'(a)*p'(u)*g'(x)=2(x-4)/{2√[(x-4)^2+25]}=(x-4)/√[(x-4)^2+25]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |