
高等数学 简单绝对值题目
1个回答
展开全部
原式=∫(0,π/4)(cosx-sinx)dx+∫(π/4,π/2)(sinx-cosx)dx
=[sinx+cosx](0,π/4)+[-cosx-sinx](π/4,π/2)
=sinπ/4-sin0+cosπ/4-cos0-cosπ/2+cosπ/4-sinπ/2+sinπ/4
=2(sinπ/4+cosπ/4)-0-1-0-1
=2(√2/2+√2/2)-2
=2(√2-1)
=[sinx+cosx](0,π/4)+[-cosx-sinx](π/4,π/2)
=sinπ/4-sin0+cosπ/4-cos0-cosπ/2+cosπ/4-sinπ/2+sinπ/4
=2(sinπ/4+cosπ/4)-0-1-0-1
=2(√2/2+√2/2)-2
=2(√2-1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询