关于线性变换,一一对应,映射的证明题
证明:设有一个线性变换T,这个T会把任意一个线性无关的向量x,x属于U,变换之后对应到另一个线性无关的向量y,y属于V。那么我们说T必须是1-1(单射)证明:设有一个线性...
证明:设有一个线性变换T,这个T会把任意一个线性无关的向量x,x属于U,变换之后对应到另一个线性无关的向量y,y属于V。那么我们说T必须是1-1(单射)
证明:设有一个线性变换T,这个T会把任意一个线性张成的向量x,x属于U,变换之后对应到另一个线性张成的向量y,y属于V。那么我们说T必须是映成(满射?) 展开
证明:设有一个线性变换T,这个T会把任意一个线性张成的向量x,x属于U,变换之后对应到另一个线性张成的向量y,y属于V。那么我们说T必须是映成(满射?) 展开
展开全部
(1) 设a,b属于U, 且 T(a)=T(b).
假如 a≠b, 则 a-b≠0, 故非零向量 a-b 线性无关
由已知条件 T(a-b) 也线性无关
即有 T(a-b)=T(a)-T(b)≠0
这与T(a)=T(b)矛盾
所以必有a=b. 故T是单射.
(2) 设a1,...,as 是U的一组生成元
由已知 T(a1),...,T(as) 是V的一组生成元.
所以对V中任一元b, 有
b=k1T(a1)+...+ksT(as)=T(k1a1+...+ksas)
所以b有原像k1a1+...+ksas.
所以T是满射.
假如 a≠b, 则 a-b≠0, 故非零向量 a-b 线性无关
由已知条件 T(a-b) 也线性无关
即有 T(a-b)=T(a)-T(b)≠0
这与T(a)=T(b)矛盾
所以必有a=b. 故T是单射.
(2) 设a1,...,as 是U的一组生成元
由已知 T(a1),...,T(as) 是V的一组生成元.
所以对V中任一元b, 有
b=k1T(a1)+...+ksT(as)=T(k1a1+...+ksas)
所以b有原像k1a1+...+ksas.
所以T是满射.
来自:求助得到的回答
光点科技
2023-08-15 广告
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |